Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic electronics with an edge

30.09.2015

Two-dimensional organic lattices are easier and safer to work with than inorganic materials for spintronic and quantum computing applications.

Using sophisticated theoretical tools, Agency for Science, Technology and Research (A*STAR) researchers, in Singapore, have identified a way to construct topological insulators — a new class of spin-active materials — out of planar organic-based complexes rather than toxic inorganic crystals [1].


A*STAR researchers have used a combination of quantum calculations and band-structure simulations to design topological insulators based on two-dimensional organic-based nanosheets.

© agsandrew/iStock/Thinkstock

The unique crystal structure of topological insulators makes them insulating everywhere, except around their edges. Because the conductivity of these materials is localized into quantized surface states, the current passing through topological insulators acquires special characteristics. For example, it can polarize electron spins into a single orientation — a phenomenon that researchers are exploiting to produce ‘spin–orbit couplings’ that generate magnetic fields for spintronics without the need for external magnets.

Many topological insulators are made by repeatedly exfoliating inorganic minerals, such as bismuth tellurides or bismuth selenides, with sticky tape until flat, two-dimensional (2D) sheets appear. “This gives superior properties compared to bulk crystals, but mechanical exfoliation has poor reproducibility,” explains Shuo-Wang Yang from the A*STAR Institute of High Performance Computing. “We proposed to investigate topological insulators based on organic coordination complexes, because these structures are more suitable for traditional wet chemical synthesis than inorganic materials.”

Coordination complexes are compounds in which organic molecules known as ligands bind symmetrically around a central metal atom. Yang and his team identified novel ‘shape-persistent’ organic ligand complexes as good candidates for their method. These compounds feature ligands made from small, rigid aromatic rings. By using transition metals to link these organic building blocks into larger rings known as ‘macrocycles’, researchers can construct extended 2D lattices that feature high charge carrier mobility.

Pinpointing 2D organic lattices with desirable topological insulator properties is difficult when relying only on experiments. To refine this search, Yang and colleagues used a combination of quantum calculations and band structure simulations to screen the electronic activity of various shape-persistent organic complexes. The team looked for two key factors in their simulations: ligands that can delocalize electrons in a 2D plane similar to graphene and strong spin–orbit coupling between central transition metal nodes and ligands.

The researchers’ new family of potential organic topological insulators has a 2D honeycomb macrocycles containing tri-phenyl rings, palladium or platinum metals, and amino linking groups. With promising quantum features and high theoretical stability, these complexes may serve as topological insulators in real world applications.

“These materials are easy to fabricate, and cheaper than their inorganic counterparts,” says Yang. “They are also suitable for assembling directly onto semiconductor surfaces, which makes nanoelectronic applications more feasible.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing and the Institute of Materials Research and Engineering. For more information about the team’s research, please visit the Materials Science & Engineering webpage.

Reference

[1] Zhou, Q., Wang, J., Chwee, T. S., Wu, G., Wang, X. et al.Topological insulators based on 2D shape-persistent organic ligand complexes. Nanoscale 7, 727–735 (2015).


Associated links
Original article from A*STAR Research

A*STAR Research | Research SEA
Further information:
http://www.researchsea.com

More articles from Machine Engineering:

nachricht A sensor system learns to "hear": Reliable detection of failures in machines and systems
05.12.2018 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Thick metal sheets? Laser welding!
30.11.2018 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>