Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-beads for the steel forge

15.12.2015

The crystal structure of metals can change at linear defects, which should affect the properties of the materials

Steel has already been around for roughly 3000 years and in several thousand variations today - yet it is always good for a surprise. Scientists at the Max-Planck-Institut für Eisenforschung in Düsseldorf have now made a discovery in manganese steel which is thought to affect the properties of the material for good and bad.


Transmission electron microscope (grey) makes linear defects in an alloy of iron (Fe) and manganese (Mn) visible. Atom probe tomography shows the distribution of the Fe (blue) and Mn atoms (green).

Max-Planck-Institut für Eisenforschung GmbH

They have found out that the alloy forms a different crystal structure at linear defects than is typical for the material. The individual crystal grains of which any metal is composed can be considered as a stack of individual atomic layers. Linear defects, or more precisely edge dislocations, occur when a layer remains incomplete so that the layers above and below it must take a step.

As the length of the linear defects in a cubic metre of steel can add up to one light year, the discovery ought to have great practical significance since the structure of a steel depends on, among other factors, how malleable, rigid and ductile it is – properties which material scientists want to continuously optimize.

Dislocations can save lives. This stems from the fact that the one-dimensional defects in a metal play an important role when the material deforms: for example, when a car body panel crumples in an accident, thus absorbing a large part of the impact energy and hopefully protecting the passengers from injury. In such a case, the dislocations act as nano-hinges along which a metal bends.

The fact that the crystal structure differs from the structure immediately around the linear defect should therefore also affect how the metal deforms. In the worst case, it tears rather than deforms. “We don’t yet know what effect the spatially confined chemical and structural states in the material have on its properties,” says Dierk Raabe, Director at the Max-Planck-Institut für Eisenforschung and head of the study in which the deviationists in the microstructure have just come to light.

“We stumbled across the states more by chance,” says Dierk Raabe. He and his team had been investigating the micro- and nano-structure of a particularly rigid and ductile manganese steel which is strengthened with the aid of nanoparticles and is used in the landing gear of large aircraft, for example. They analysed this material with the aid of atom probe tomography.

The analysis involves a sample being vaporized atom by atom with short pulses of an electric voltage. From the time-of-flight to a detector it is possible to determine to which element the vaporized detached atom belongs; its position in the sample can be determined from the location where the atom impinges on the detector.

The researchers found chains of manganese-rich nano-beads in the steel

“We noticed that the concentration of the manganese increased along specific lines after we had heated the material,” explains Dirk Ponge, who made important contributions to the study. The fine tubes in which the manganese collects are only two nanometres wide. And this happens not along the whole length, but more in the form of a chain of manganese-rich nano-beads.

In order to accommodate the larger number of manganese atoms in these minute areas, the crystal structure of the material must change. Iron and manganese atoms normally sit at the corners and centers of a cubic unit cell, the smallest structural unit. The researchers call this a body-centred cubic or martensite structure. The manganese concentration in the chain of nano-beads corresponds to an arrangement in which the atoms are located on each face and corner of the unit cell, in technical terms, a face-centred cubic or austenite structure.

Previously, material scientists only knew such deviations from the regular crystal structure of a metal in two-dimensional form, i.e. from the boundaries of the individual crystal grains which form a material. But why did they find filigree austenite structures in the interior of individual martensite crystal grains? “When we saw that the manganese accumulated in thin tubes, we had the idea there could be spatially confined chemical and structural states along linear defects,” says Dirk Ponge.

The different crystal structure at the defect helps to save energy

In order to be certain, he and his colleagues first scanned an iron-manganese sample in a transmission electron microscope, which makes linear defects clearly visible. They then mapped the distribution of the atoms in the sample again with the aid of atom probe tomography. And on the superimposed images from both methods they actually did find how the manganese-rich nano-beads arrange themselves precisely along the linear defects.

The fact that the atoms arrange themselves differently from the remaining crystal precisely along the dislocations is also suggested by an explanation of the observation: “The stress is particularly high at the dislocations,” says Dirk Ponge. “The material can apparently reduce stress and thus assume an energetically more favourable state by forming a crystal structure there which would be energetically less favourable otherwise.” On the basis of this finding, the Düsseldorf-based researchers extended a key formula that material scientists use to calculate which structure a material favours under which conditions at such structural defects.

Can a Damascus steel forge itself?

The researchers had first to mobilize the atoms with heat so that the atoms could assume the structure which is energetically more favourable there, directly at the dislocation, and only there. “This doesn’t mean that the spatially confined chemical and structural states form only when heat is applied, however,” says Dierk Raabe. These states can therefore probably not only be found in the cylinders of a motor, the blades of a turbine or other materials that are permanently subjected to great heat. “Small atoms, such as those of carbon, are much more mobile than those of manganese,” explains Dierk Raabe. “We therefore must assume that we will find the spatially confined states in carbon containing car body steel panels as well.”

The researchers now want to investigate what effect the local structural change has on the properties of a material. “Our findings may help to explain an already known behaviour of metals – the fact, for instance, that metals become brittle when they corrode and absorb hydrogen,” says Dierk Raabe.

However, it’s not always bad news when the crystal structure at linear defects steps out of line. “Maybe we can bring about these spatially confined states intentionally in order to develop a nano-Damascus steel that forges itself,” says the Max Planck Director. Damascus steel received its name because it came to Europe via Damascus. Expert craftsmen in the Orient forged a hard, yet brittle, and a ductile, yet soft steel into a composite material which is hard, but does not break easily. In future, a simple way may be found to combine these actually incompatible properties, if dislocations could be used to help provide a structure. This would open up completely new possibilities for the steel industry to optimize a material for a special application in an even more targeted way.

Weitere Informationen:

http://www.mpie.de/2281/en

Yasmin Ahmed Salem | Max-Planck-Institut für Eisenforschung GmbH

More articles from Machine Engineering:

nachricht A sensor system learns to "hear": Reliable detection of failures in machines and systems
05.12.2018 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Thick metal sheets? Laser welding!
30.11.2018 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>