Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modular Prototype Production with Lasers Enables Faster Gas Turbine Development

06.07.2016

The long lead time of turbine blades and vanes presents a big challenge to the validation of new part designs in engine tests. Conventional vane production through casting is unsuited for the fast iteration cycles required today in the development of hot path components. In a joint project, Siemens and the Fraunhofer Institute for Laser Technology ILT have now developed a faster production process based on selective laser melting (SLM). Components are manufactured in a modular way in the new process chain, resulting in additional benefits.

Last year, Siemens commissioned its Clean Energy Center, a new combustion test center in Ludwigsfelde near Berlin. The center plays a major role in developing and refining gas turbines as a facility for conducting realistic tests on various turbine components with liquid or gaseous fuels. Rigorously optimizing the combustion processes involved is the key to achieving greater energy efficiency in the turbines.


Guide vanes made using the new modular process chain (material: Inconel® 718).

Fraunhofer ILT, Aachen, Germany.


Individually manufactured segments of the guide vanes for the modular process chain (material: Inconel® 718).

Fraunhofer ILT, Aachen, Germany.

During the tests, individual turbine parts are exposed to temperatures of 1500 degrees Celsius or more. Such components are usually manufactured from superalloys in a precision casting process, in which each iterative loop may last several months and incur significant costs. Thus far, this has severely curtailed the number of tests possible.

Fast prototype production with additive laser techniques

Experts from the Siemens gas turbine manufacturing plant in Berlin and the Fraunhofer Institute for Laser Technology ILT in Aachen, Germany, have now developed a laser-based technology that considerably speeds up the manufacturing process for turbine vanes slated for the hot gas area of the engine.

To withstand the high temperatures over long periods of time, the turbine vanes require complex internal cooling structures. Selective laser melting (SLM) has proven itself to be up to the challenge, especially for prototypes or small batches featuring complex geometries. Similar to using a 3D printer, special alloys are melted by laser on a powder bed. The components are then built up layer by layer.

Over the past several years, Fraunhofer ILT has built up considerable expertise in the use of additive laser techniques and alloys for components exposed to high temperatures. With this wealth of experience, the scientists were able to develop special processes that made it possible to produce the relatively large parts (up to 250 mm) at Siemens with a high degree of dimensional accuracy and superior surface quality.

New production chain uses modular design for turbine vanes

Securely mounted on the turbine housing, guide vanes channel the hot gas to the movable rotor blades. The guide vanes consist of two massive platforms plus an airfoil with a delicate cooling structure. The latter presents a major manufacturing challenge; even production using SLM required additional internal supports.

A modified process chain has solved the problem: the platforms and the airfoil are manufactured separately and then subsequently brazed together. This makes it possible to not only eliminate the supports in the blade, but also to improve the surface quality. The result is a fully functional component that can be used in hot path rig testing in order to deliver quick feedback to the design engineers.

Siemens optimized various production steps in preparation for this idea. After manufacturing via laser, the parts are precisely measured, subjected to finishing, and then joined using high temperature brazing.

This modular production of turbine blades offers significant potential for other components as well. It would make it possible to connect cast and SLM-made parts, leaving just the complex or variable parts to be produced using SLM. At the same time, it would also facilitate the production of parts with difficult geometries that are currently too large for the SLM process.

Contact:

Dipl.-Ing. Jeroen Risse
Group Rapid Manufacturing
Telephone +49 241 8906-135
jeroen.risse@ilt.fraunhofer.de

Dr.-Ing. Wilhelm Meiners
Group Manager Rapid Manufacturing
Telephone +49 241 8906-301
wilhelm.meiners@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html
http://s.fhg.de/BYt

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: Fraunhofer-Institut Gas Turbine ILT Lasertechnik Rapid Manufacturing Turbine hot gas

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A factory to go
04.07.2018 | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>