Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring paper thickness fast and reliably

14.03.2016

The Fraunhofer Institute for Laser Technology ILT is unveiling its “bd-2” sensor for thickness measurements of paper and board webs. Within a measurement range of 8 millimeters, the system can accurately measure the thickness and embossed depth with a precision better than 200 nm. The small sensor head coupled with high-speed data processing facilitates inline measurements in the production line. At CONTROL 2016 in Stuttgart, Germany, visitors can experience the “bd-2” sensor live.

Materials and quality control must meet increasingly stringent requirements in the paper processing industry. To provide thickness measurement, for instance, sensors must now be accurate down to the sub-micron range yet nonetheless operate in the production line as fast as possible and with minimal maintenance.


Picture 1: The “bd-2” thickness measurement system based on bidirectional sensors.

© Fraunhofer ILT, Aachen, Germany.


Picture 2: Paper webs in production process.

© fotolia. Please note that this picture might only be used in connection with this press release.

To meet these requirements the optical thickness measurement system “bd-2” (for bidirectional measurements) was developed at Fraunhofer ILT. The sensor sends a measuring beam onto the material surface and the reflected signal allows the distance to be measured with a precision of 200 nm. The sensor has been previously used, e.g. for surveying cold-rolled metal sheets.

A special feature of the system is the 70 kHz sampling rate. This allows for an absolute and continuous measurement of the distance to the surface during running production. The thickness measurement system “bd-2” comprises two sensing heads mounted in a C-frame to measure the thickness of the product passing by.

“bd-2” is suited to measure the thickness of paper and board webs in the range of 10 µm to several millimeters. Untreated surfaces are measured as safe as painted, embossed, smoothed or supercalendered.

A new sensing head simplifies the entire measurement process

Compared with established methods – such as radiometric, capacitive or inductive methods – the new sensor offers several advantages:

Since irradiated and reflected beams are propagating along the same line, alignment efforts are eliminated as transmitter and receiver no longer have to be adjusted to each other.

To send and to receive the backscattered radiation only a small measuring head with a weight of 100 g is needed. It uses a small window with a 2 mm diameter, the cast protected by an air stream in harshest environments reliably against contamination. Compared with conventional sensors its spot diameter is about 100 microns, so that even the smallest structures can be detected.

Control processes safely

The new sensor »bd-2" provides the accuracy of interferometric measurement methods and is significantly faster than the established measurement technologies. The complete system processes up to 70,000 thickness readings per second. So, inline measurements are possible even at high product speeds that enable fast feedback loops to control and optimize production processes.

Sensor sets new standards for industrial manufacturing

In terms of speed and integrability, “bd-2” sets new standards for process control and quality assurance in various industry segments. The process paves the way for the transition from laboratory-based individual measurement to continuous inline production control. This is why the Fraunhofer ILT experts are targeting industry customers looking to meet higher accuracy requirements in series production, offering them not just complete systems but also extensive consulting in relation to process integration. The sensors were tested extensively in pilot plant operation, first industry partners have already carried out test runs with the system in their production lines.

Fraunhofer ILT at CONTROL 2016

The interferometric thickness sensor »bd-2« will be showcased at this year’s CONTROL in Stuttgart, Germany on the stand 1502of the Fraunhofer Alliance Vision in Hall 1.

Contact

Dr. Stefan Hölters MBA
Interferometrical Sensors
Telephone +49 241 8906-436
stefan.hoelters@ilt.fraunhofer.de

PD Dr. Reinhard Noll
Head of the Measurement
Technology and EUV Sources
Competence Area
Telephone +49 241 8906-138
reinhard.noll@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A factory to go
04.07.2018 | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>