Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser beam repairs engine components - major market potential for aircraft construction and mechanical engineering

01.07.2009
As part of a long-term collaboration with the Original Equipment Manufacturer (OEM) Rolls-Royce Deutschland (RRD) in Oberursel, the Fraunhofer Institute for Laser Technology ILT, working together with the Chair for Laser Technology LLT at the RWTH Aachen, has developed an innovative and cost-efficient repair technique for engine components.

Ensuring flight safety is regarded as the number one priority in civil aviation. One of the key strategies to achieve this is by maintaining reliable engine performance, which is why engines undergo regular, thorough inspections in which they are completely disassembled and comprehensively serviced.

The components of the engine that are made from titanium and nickel-based alloys (superalloys) are subject to heavy wear due to extreme fluctuations in pressure and temperature. In addition, they are frequently damaged by foreign bodies that are sucked into the engine during take-off and landing. Until recently, it was not a feasible option to carry out the kind of special repairs that involved having to replace sections of worn materials.

Components that could not be repaired therefore had to be replaced in their entirety. As well as being extremely expensive, these replacement com-ponents were often difficult to get hold of due to material availability problems in the global market.

Researchers from the Fraunhofer ILT and the LLT have now succeeded in surmounting these difficulties by using a laser cladding technique that enables these defective engine com-ponents to be repaired. "What is so innovative is the fact that we can take oxidation-sensitive titanium materials and components that have a tendency to distort and weld them in a precise and reproducible manner without any distortion," explains Dr. Andres Gasser, project manager at the Fraunhofer ILT. "A local gas atmosphere is used to prevent the molten weld pool generated in the cladding process from reacting with the surrounding atmosphere. With this method we can avoid the need to use a costly processing gas chamber." The Aachen-based research institute is able to take on responsibility for handling the entire project, ranging from process development and certification to installation of a system for laser cladding at the site of the industrial project partner.

Using this new technique, a local weld pool is generated by the laser beam on the surface of the component. A specially designed powder feed nozzle then introduces a metal powder composed of a similar material. The resulting layer possesses similar mechanical properties to those of the component. "One of the keys to this technique is a newly developed system of powder feed nozzles, which increases the efficiency of powder use while preventing oxidation of the layers," explains Gerhard Backes, project manager for nozzle development at the LLT. Thanks to the special nozzles' modular configuration and compact design, the range of possible applications is virtually unlimited. A further advantage of laser cladding in comparison to conventional welding is the fact that the low thermal load helps to minimize component distortion while ensuring that the weld is free from defects and smoothly contoured to the shape of the component.

In parallel to developing the process, the Fraunhofer ILT supplied a modified laser cladding machine produced by the company TRUMPF, which has now been up and running at Rolls-Royce Deutschland for around one year, where it has been producing superb results. Martin Spallek, responsible for component repair at RRD, sums up the developments so far: "By deploying this repair technique we have managed to reduce the time required for general overhauls of the engines by approximately one third while simultaneously cutting costs. That has made a huge contribution towards boosting our competitive advantage."

The innovation cluster "Integrative production technology for energy-efficient turbomachinery - TurPro" set up by the Fraunhofer-Gesellschaft is further enhancing this repair technique for turbomachinery components. This will mean that the technology can also be applied to land-based turbines, opening up new potential for general types of engine technologies and - over the long term - for the entire field of mechanical engineering. An impressive way of making a lasting contribution towards securing Germany's status as a high-wage location.

Your contacts at the Fraunhofer ILT
Our experts are on hand to answer your questions:
Dr.-Ing. Andres Gasser
Surface Engineering Department
Fraunhofer Institute for Laser Technology ILT
Phone +49 241 8906-209
andres.gasser@ilt.fraunhofer.de
Dipl.-Ing. Gerhard Backes
Chair for Laser Technology at the RWTH Aachen
Phone +49 241 8906-410
gerhard.backes@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121
http://www.ilt.fraunhofer.de
Your contact at TRUMPF
Jürgen Metzger
Sales of laser cladding systems
TRUMPF Laser- und Systemtechnik GmbH
Johann-Maus-Straße 2
71254 Ditzingen
Deutschland
Tel. +49 7156 303-36194
Fax. +49 7156 303-30879
juergen.metzger@de.trumpf.com

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.trumpf-laser.com
http://www.ilt.fraunhofer.de
http://www.ilt.fraunhofer.de/eng/100031.html

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A factory to go
04.07.2018 | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>