Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New invention regulates nerve cells electronically

21.05.2010
A major step toward being able to regulate nerve cells externally with the help of electronics has been taken by researchers at Linköping University and the Karolinska Institute in Sweden. The breakthrough is based on an ion transistor of plastic that can transport ions and charged biomolecules and thereby address and regulate cells.

The invention, which opens new avenues for controlling chemical signals, is being published in the coming issue of the highly ranked scientific journal PNAS. The authors are Klas Tybrandt and Magnus Berggren of Linköping University, who developed the invention, and Karin Larsson and Agneta Richter-Dahlfors at the Karolinska Institute, who have used it in experiments with cultivated nerve cells.

The four scientists work at the OBOE Research Center, which is dedicated to the study and regulation of processes in living cells and tissue through the use of organic electronics.

Previously use has been made of nano-canals and nano-pores to actively control the concentration and transport of ions. But such components are difficult to produce and moreover function poorly when the salt content is high, which is a precondition in interaction with biological systems.

"To get around these problems, we exploited the similarity between ion-selective membranes - plastics that only conduct ions of one charge - and doped semiconductors, such as silicon. It was previously known that it is possible to produce diodes from such membranes. We took it a step further by joining two ion diodes into a transistor," says Klas Tybrandt, a doctoral candidate in organic electronics.

When an ion transistor was connected to cultivated nerve cells, it could be used to control the supply of the signal substance acetylcholin locally to the cells. The successful result demonstrates both that the component functions together with biological systems and that even tiny charged biomolecules can be transported without difficulty.

"Since the ion transistor is made of plastic, it can be integrated with other components we are developing. This means we can make use of inexpensive printing processes on flexible materials. We believe ion transistors will play a major role in various applications, such as the controlled delivery of drugs, lab-on-a-chip and sensors," says Magnus Berggren, Önnesjö professor of organic electronics.

Article: Ion bipolar junction transistors by Klas Tybrandt, Karin C. Larsson, Agneta Richter-Dahlfors, and Magnus Berggren, PNAS Ahead of print May 17 2010.

Contact: Klas Tybrandt phone: +46 (0)11-363334, mobile: +46 (0)70-4997772, klaty@itn.liu.se and Magnus Berggren phone: +46 (0)11-363637, mobile: +46 (0)709-783430, magbe@itn.liu.se

Pressofficer Åke Hjelm; åka.hjelm@liu.se; +46-13281 395

Åke Hjelm | idw
Further information:
http://www.oboe.nu/
http://www.pnas.org

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A factory to go
04.07.2018 | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>