Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer scientists develop universally applicable broadband eddy current electronics

09.04.2019

Current developments in the field of industry 4.0 such as the digitalization of production plants and processes provide massive new challenges to nondestructive inspection technologies. Fraunhofer IZFP scientists in Saarbrücken have developed a novel eddy current platform, which is able to operate currently necessary interfaces. As a consequence, the platform can easily be integrated into digitization concepts. As part of a multimodal electronics series, experts from this Saarland research institute present the inspECT-PRO eddy current platform at the 33rd Control in Stuttgart from 7 to 10 May 2019 (hall 6, booth 6301).

Due to the high degree of automation of the technology as well as the comprehensive range of potential applications nondestructive material and defect inspection using eddy current methods has become indispensable for nondestructive inspection applications.


With the inspECT-PRO eddy current electronics, our engineers and scientists are demonstrating an innovative inspection electronics concept at this year's Control: A module of the new electronics series that operates currently necessary interfaces such as the OPC-UA specification, thus, providing easy integration into production processes.

“Our goal was to develop a broadband eddy current inspection electronics that can be used flexibly and adapted to customer requirements in a wide variety of applications,“ explains Dirk Koster, group leader and scientist at Fraunhofer IZFP.

Engineering features of the novel broadband eddy current platform

“Real-time“ inputs and outputs can be used for process control. For easy integration into the data system of a production plant, the OPC-UA specification sends component-specific data such as evaluation results, batch number, date or other metadata to any information unit.

This implies the comprehensive documentation of each component inspection for incorporation into the company's digitization strategy. The module, which is equipped with two independent hardware channels, can be used in single-frequency or multi-frequency operation with up to 32 test frequencies per channel.

Coordinate signals are directly connected to the eddy current signals via a 3-axis interface. The module can be supplied as an OEM kit for integration into customer systems. Alternatively, a slide-in, top hat rail mounting, laboratory or mobile laptop system can be flexibly adapted.

Operating the electronics platform to inspect lightweight construction structures

Today, eddy current technology is used not only for standard applications in material inspection such as inspection of steel, aluminum or copper. With the increased demands on lightweight construction, the requirements placed on materials (e.g. CFRP) are also growing steadily. In order to test such weakly electrically conductive materials, however, a high test frequency is required.

A broadband approach with test frequencies from 10 Hz to 112.5 MHz has been implemented so that both standard and new materials can be tested successfully. With high sample rates of up to 125 ksamples/s in single-frequency mode, even very fast test situations can be mapped. Due to the use of powerful FPGA and DSP components, the board is well suited for fast signal processing and evaluation.

Cognitive sensor systems – efficient processes

The scientists of the institute develop cognitive sensor systems for monitoring, controlling and optimization of individual processes or entire value chains. The focus here is not only on production processes, but also on processes in the fields of material and product development, upkeep, maintenance and recycling of materials. For this purpose, the institute uses the entire range of available physical measuring principles.

Wissenschaftliche Ansprechpartner:

Dirk Koster, M.Sc. | Fraunhofer Institute for Nondestructive Testing IZFP | Phone +49 681 9302-3894 | Campus E3 1 | 66123 Saarbrücken, Germany | www.izfp.fraunhofer.de | dirk.koster@izfp.fraunhofer.de

Weitere Informationen:

https://www.izfp.fraunhofer.de/en/Presse/Pressemitteilungen/inspECT-PRO.html

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Machine Engineering:

nachricht One third less consumption: Industry & research work together on fuel-efficient SI engines
04.03.2019 | Forschungsvereinigung Verbrennungskraftmaschinen e.V.

nachricht Large bearing test bench starts continuous operation
28.02.2019 | Fraunhofer-Institut für Windenergiesysteme IWES

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

Im Focus: Newly discovered mechanism of plant hormone auxin acts the opposite way

Auxin accumulation at the inner bend of seedling leads to growth inhibition rather than stimulation as in other plant tissues.

Increased levels of the hormone auxin usually promote cell growth in various plant tissues. Chinese scientists together with researchers from the Institute of...

Im Focus: Creating blood vessels on demand

Researchers discover new cell population that can help in regenerative processes

When organs or tissues are damaged, new blood vessels must form as they play a vital role in bringing nutrients and eliminating waste. This is the only way for...

Im Focus: Substantial differences between the tumor-promoting enzymes USP25 and USP28 identified

Researchers from the Rudolf Virchow Center of the University of Würzburg (JMU) have solved the structures of the cancer-promoting enzymes USP25 and USP28 and identified significant differences in their activities. Both enzymes promote the growth of various tumors. The results were published in the journal Molecular Cell and could benefit towards the development of new, low-side-effects anticancer drugs.

The permanent interplay of protein production and degradation is a major driver of cellular metabolism. A key mechanism of this regulation is the labeling of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

European Geosciences Union meeting: ExoMars press conference, live streams, on-site registration

02.04.2019 | Event News

Networks make it easier

02.04.2019 | Event News

 
Latest News

Heraeus Noblelight Introduces the First Broadband UV LED Light Source Module for Analytical Measurement

10.04.2019 | Power and Electrical Engineering

A long-distance relationship in femtoseconds

10.04.2019 | Physics and Astronomy

More than 90% of glacier volume in the Alps could be lost by 2100

09.04.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>