Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced ball screw drive with increased lifetime through novel double nut design

23.01.2018

Ball screw drives with preloaded nuts are frequently used in machine tools. They are typically exposed to rather high load forces and must be in addition preloaded for high precision requirements. An excessive amount of preload, however, will cause unwanted friction and wear, while little preload will result in poor precision. An invention of the University of Stuttgart solves this problem by adding additional spring elements.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patent-related matters and in marketing its innovations.

Ball screws or ball screw drives are gear arrangements with rolling balls inserted between a screw and nut element. They are used to translate rotational motion to linear motion or vice versa. In comparison to conventional screw gears with dominant sliding friction, where approximately 50 to 90 percent of the power is converted into heat, ball screw drives work with less friction, high positioning accuracy and reduced wear. The higher production costs can be justified by the practical advantages and a longer lifetime. More than a third of machine tool failures are due to fatigue fractures of ball screws.


An invention of the University of Stuttgart combines a high rigidity and thus a high precision and long life, with a minimum of preload.

Grafik: TLB GmbH

In order to provide the required precision and rigidity of a ball bearing spindle, a contact preload can be applied using so-called double nuts. However, large axial forces can produce an overload situation during which one of the two nut halves is completely unloaded. As a result, excessive sliding movements and a rupture of the lubricating film may lead to an early destruction of the ball bearing spindle.

To avoid this, the preload is usually set sufficient high, which leads to excessive more friction and thus higher wear. This in turn negatively affects the accuracy and lifetime of the spindle. Moreover, a lower preload reduces the mechanical and thermal load on the ball screw drive and increases its expected lifetime.

A constant preload can, for instance, be implemented by inserting a spring element between the two halves of the nut, as done in the case of alternative double nut systems (Fig. 1). However, due to the high elasticity of the spring element, these systems are not suitable for high-accuracy or high-dynamic applications.

At the University of Stuttgart, Dr.-Ing. Siegfried Frey succeeded in developing a solution that combines a high rigidity and thus a high precision and long life, with a minimum of preload.

Between the two nut halves of a symmetrical double nut, additional elements – with an e-module lower than that of the nut materials – are inserted, for example within a ring-shaped groove (Fig. 2). These are located in the force shunt, between the nut and clamping flange and simply remain in static condition – contrary to conventional solutions with spring elements.

However, for high axial loads, the preloaded elements escape the force shunt and create a residual preload in the unloaded nut half, avoiding total unloading. This prevents excessive sliding movements. Due to the arrangement of the spring elements in the force shunt, there is nearly no impact on the rigidity of the overall system. The residual preload can be controlled by the parameters of the elastic element.

This invention allows to preload ball screw drives easily and cost-effectively with a significantly lower load, but without any negative impact on the rigidity and accuracy of the overall system. The solution is suitable for a wide range of ball screw drives, especially for tool machines with high performance requirements. Depending on the application and the type of load, the invention can increase the life of a ball screw significantly, while maintaining the required precision and rigidity.

Patents for the invention were granted in Germany (DE10 2009 0499 36B4) and a European application (EP) was filed. Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patent-related matters and in marketing its innovations. The University of Stuttgart has entrusted Technologie-Lizenz-Büro (TLB) GmbH with the economic implementation of this cutting-edge technology and offers companies the possibility of obtaining licenses or purchasing the patents.

For further information, please contact: Innovation manager Dipl.-Ing. Emmerich Somlo (somlo@tlb.de)

Weitere Informationen:

http://www.technologie-lizenz-buero.com/

Annette Siller | idw - Informationsdienst Wissenschaft

More articles from Machine Engineering:

nachricht Efficient engine production with the latest generation of the LZH IBK
13.11.2019 | Laser Zentrum Hannover e.V.

nachricht Magnets for the second dimension
12.11.2019 | ETH Zurich

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

With Mars methane mystery unsolved, curiosity serves scientists a new one: Oxygen

13.11.2019 | Physics and Astronomy

AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics

13.11.2019 | Life Sciences

Efficient engine production with the latest generation of the LZH IBK

13.11.2019 | Machine Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>