Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineer Works to Clean and Improve Engine Performance

19.09.2008
Iowa State University's Song-Charng Kong and his students are working to reduce emissions in diesel engines, develop a computer model of a gasoline engine and optimize new engine technologies. The results could be cleaner, more efficient engines in our cars and trucks.

Song-Charng Kong, Mechanical Engineering, (515) 294-3244, kong@iastate.edu

The five engines in Song-Charng Kong’s Iowa State University laboratory have come a long way since Karl Benz patented a two-stroke internal combustion engine in 1879.

There are fuel injectors and turbochargers and electrical controls. There’s more horsepower, better efficiency, cleaner burning and greater reliability.

But Kong – with the help of 15 graduate students and all kinds of sensors recording engine cylinder pressure, energy release and exhaust emissions – is looking for even more.

Kong, an Iowa State assistant professor of mechanical engineering who keeps a piston by his office computer, is studying engines with the goal of reducing emissions and improving efficiency.

“There is still a lot of work to be done to improve engine performance,” Kong said. “All of this work will lead to incremental improvements.”

And those small improvements can add up when you consider there are more than 250 million registered vehicles on U.S. highways, according to the U.S. Department of Transportation.

Kong and his students are working on a lot of combustion projects in the lab: They’re studying diesel engines with the goal of reducing emissions. They’re developing a computer model of a gasoline engine that will make it much easier and faster to research and develop new engine technologies. They’re figuring out how to optimize new technologies such as multiple fuel injections per combustion cycle.

They’re working with Terry Meyer, an Iowa State assistant professor of mechanical engineering, to use high-speed, laser-based sensors that can record images of injection sprays and combustion inside a cylinder. That can give researchers insights into combustion characteristics and ideas for improvements.

They’re also studying how plastics dissolved in biodiesel affect engine performance. Biodiesel acts as a solvent on certain plastics and that has Kong checking to see if some waste plastic could be recycled by mixing it into fuel.

And they’re studying the combustion of ammonia in engines. Ammonia is relatively easy to store, is fairly dense with hydrogen and doesn’t produce greenhouse gases when it burns. So burning ammonia in engines could be an early step to developing a hydrogen economy.

Kong’s work is supported by grants from Deere & Co., the Ford Motor Co., the U.S. Department of Energy’s Los Alamos National Laboratory, the Ames-based Renewable Energy Group Inc. and the Iowa Energy Center based at Iowa State.

As he showed a visitor around his engine lab recently, pointing out a new turbocharger here or an experimental one-cylinder engine there, Kong said there’s good reason to keep studying engines.

“We want to make these engines better,” Kong said. “In my mind, the internal combustion engine may be the most important combustion system in daily life. Just by improving combustion efficiency by a fraction, we can save a lot of energy for the country and the world.”

And yes, he said, “There is a future for internal combustion engines.”

Mike Krapfl | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A factory to go
04.07.2018 | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>