Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemnitz University of Technology Tests a Driverless Transport System at KOMSA Logistics

12.06.2019

The prototype “Hubert” was created as a part of a three-year project – a special feature of Hubert is a 3-D sensor that recognises people and thus makes it possible to collaborate beyond its usually autonomous operating mode

Central Germany is considered by many to be a region filled with inventors and tinkerers. On the way towards Industry 4.0, a new solution for the future has appeared: Chemnitz University of Technology has developed a driverless transport system, in cooperation with three German firms as part of a research project. The trial runs are now taking place in the new logistics centre of the KOMSA Group in Hartmannsdorf, and they are now entering a crucial phase.


Christoph Allmacher, research fellow at the Professorship of Machine Tool Design and Forming Technology, is testing the “Hubert” driverless transport system.

Photo: René Apitzsch

“Hubert” – that is the name of the small, four-wheeled vehicle, which looks like a car and is designed to relieve workers in the area of logistics and reduce unnecessary movement.

The prototype of the driverless transport system was developed as part of a three-year research project in cooperation with SICK AG from Waldkirch, iFD GmbH from Chemnitz, and LIVINGSOLIDS GmbH from Magdeburg. During the test phase, KOMSA will make its new logistics centre available as a testing environment.

In several one-day test runs, “Hubert” has been recently “exploring” KOMSA Logistics. Not only did the robot have to get used to the environment, it also had to continue paying attention to dynamic obstacles and react accordingly. Today begins a four-day final testing phase.

Application in real conditions

What distinguishes “Hubert” from previous developments: A 3-D sensor recognises people and enables collaboration beyond the usual autonomous operating mode. This makes its use in environments where people are located not only possible, but actually desirable.

“The car was deliberately designed to work with people,” explains Christoph Allmacher from the Professorship of Machine Tool Design and Forming Technology at Chemnitz University of Technology, who is in charge of the final phase of the research project.

The goal of the final phase is to test the applicability of the developed driverless transport system in an industrial environment. On the basis of the test results, a manufacturer in the area of logistics systems could start series production once the research project is over, and “Hubert” could be deployed worldwide to optimise logistics processes. “We looked for an experienced and competent testing partner and with KOMSA, we have found it,” says Allmacher.

KOMSA was recently awarded the German Logistics Prize from the German Logistics Association, and the European Logistics Award from the European Logistics Association. “KOMSA Logistics is designed with a good mix of manual and automated processes, making things both highly dynamic and highly complex, due to the different carton sizes and order volumes. It is always best to test under real conditions like these.”

Relief for logistics employees

Different scenarios are tested at KOMSA Logistics. For one, the transport system should be able to autonomously bring empty boxes to one of the logistics staff, thereby giving them time for other tasks. During the packing process, “Hubert” should be able to follow around the employee who fills the boxes with articles. Once all of the boxes have been packed, the loaded cart drives independently to the packing line.

“Traditionally, employees in a warehouse travel many kilometers per day,” explains KOMSA Production Board of Directors member Sven Mohaupt. During the course of the expansion and reconfiguration of logistics, KOMSA has already done a lot in recent years to relieve employees and reduce their trodden paths.

“The autonomous car we are testing could now become a further relief, and at the same time help us set up an even faster and more flexible logistics service. As we supply both small retailers and large markets, both companies and private customers, it requires us to process very different order volumes. And every one of our customers needs the goods they order from us in as short a time as possible. We have to be prepared for that, and such inventions can be of great help.

On 30 June 2019, the research project will end, after a period of three years. It was funded with around 1.5 million euros from the Federal Ministry of Education and Research.

For more information: https://followme-ils.com

Contact: Christoph Allmacher, Phone +49 0371 531 32036, E-mail christoph.allmacher@mb.tu-chemnitz.de.

Participating companies in the research project:

SICK AG is one of the world’s leading manufacturers of sensors and sensor solutions for industrial applications in the fields of safety technology, automation, logistics and environmental measurement technology. Based on its core competence in the field of intelligent “Machine Vision” solutions, SICK AG has developed an intelligent 3-D sensor system within the framework of this research project, which enables the driverless transport system to follow a specific person. In addition to robust and intelligent sensors, such as the SICK 3-D Visionary-T sensor, smart algorithms for data fusion as well as object detection and classification are utilised.

iFD GmbH plans, develops and implements worldwide software systems for automated and manual areas of the field of intralogistics. The range of services offered by iFD include the following product areas: warehouse management, material flow control, forklift control systems, picking solutions, simulation systems and individual software development, as well as service and support. The company has its own research and development department. This is an important prerequisite for the permanent guarantee of innovations and further developments in software systems and add-on components. Since the company was founded in 1990, more than 300 projects have been realised across all industries. Continuous development and committed research as well as the targeted improvement of concepts and products are indicators of success for adapted software systems, which represent the ideal logistics solution for a large number of national and international customers. As part of the research project, iFD GmbH has developed the “Master Control Program”, which coordinates the driverless transport system and distributes orders.

LIVINGSOLIDS GmbH is an innovative software company in the field of interactive 3-D visualisation and simulation. LIVINGSOLIDS software solutions allows for intuitive interaction with 3-D models of equipment, machinery and consumer products in real time. The solutions are characterised by a high level of process integration, and are successfully used worldwide in the areas of virtual prototyping, assembly simulation, virtual construction and ergonomics analyses, worker guidance and more. In the research project, LIVINGSOLIDS is responsible for the development of the interactive visualisation and control component called VICOS. Its employees contribute their extensive experiences in mathematical modelling, numerical simulation and interactive 3-D visualisation of complex technical equipment and processes.

Wissenschaftliche Ansprechpartner:

Christoph Allmacher, Phone +49 0371 531 32036, E-mail christoph.allmacher@mb.tu-chemnitz.de

Matthias Fejes | idw - Informationsdienst Wissenschaft
Further information:
http://www.tu-chemnitz.de/

Further reports about: 3-D Driverless Transport four-wheeled vehicle software systems

More articles from Machine Engineering:

nachricht How interstitial ordering affects high-strength steels
14.05.2020 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Reprogramming of macroscopic self-assembly with dynamic boundaries
14.05.2020 | Max-Planck-Institut für Intelligente Systeme

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>