Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A factory to go

04.07.2018

In the future, companies will be able to offer flexible production close to their customers. A fully automated production line can be housed inside a 20-foot ISO container, which a heavy truck can transport quickly to wherever it is needed. Medical products can be manufactured in close proximity to a hospital, for instance. Fraunhofer researchers teamed up with partners to develop this mobile factory in the scope of CassaMobile, an EU project.

Imagine you are late for the train once again. Things get hectic, you trip – and break your leg. A compound fracture! You will need surgery. But first a specialist must insert screws to ensure the bones heal properly. A surgeon will often use a bone drilling guide that is custom-made for each patient. Such guides help surgeons perfectly position the bone screws. Few companies produce bone drilling guides, however. Some patients must wait as long as a week for their tailored guide to arrive at their local hospital.


ISO freight container set up on campus.

(c) Fraunhofer IPA


A peek inside: a modular and intelligently connected manufacturing system with a tiny footprint.

(c) Fraunhofer IPA

Much faster deliveries

This should not take as long if these guides are made closer to the people who need them – close to hospitals, for example. But how can this become a reality? A mobile factory called CassaMobile is the answer. Led by the Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 12 European companies and institutes developed this mobile production facility in the scope of the EU’s CassaMobile project. Fraunhofer IPA supplied the idea and the concept.

“This mobile factory can reduce a delivery time of up to a week to just two days,” says Raphael Adamietz, IPA’s CassaMobile project manager. The Italian term “CassaMobile” refers to an ISO freight container. The exterior of the green and white container seems nondescript. But first impressions can be deceiving: Its interior boasts a smart mini-factory. This mobile unit can be used, for example, to 3D-print bone drilling guides and rework them in a milling machine before verifying their quality and sealing them in sterile packaging.

Transport by truck, supply electricity and start production

Manufacturers benefit in numerous ways from this portable plant. CassaMobile offers great flexibility. Researchers deliberately opted for dimensions just below the threshold for an oversize load, which would require an escort vehicle to accompany the truck on the road. Another advantage is that customers need to purchase equipment only once. They can then transport it to wherever they need it, saving money and reducing their environmental impact. As the container is fully equipped prior to transport, all the customer needs on site is electricity, water and compressed air. Production can begin immediately.

Manufacturing items in close proximity to the customer drastically reduces delivery times. And this could boost sales. After all, delivery speed is a decisive factor for customers when it comes to deciding which supplier to use.

Modular design for versatility

A CassaMobile container allows customers to manufacture tailor-made products very quickly virtually anywhere. This is possible thanks to the researchers’ commitment to a modular design. It is easy to modify or expand the supply chain. Users can also omit individual modules, if desired. This makes it possible to deploy the mobile factory to disaster areas after earthquakes, for instance.

Specialized response teams on site can then use a CassaMobile to produce items critical to restoring the supply of drinking water, for example. These containers could also benefit regions in which factories are unlikely to be erected due to a lack of sufficient infrastructure and suitable structures. By contrast, a CassaMobile is a standalone infrastructure. Another potential use is the production of something in short supply: spare parts for motor vehicles in Africa, for example.

Centerpiece: 3D printer

The most important module of this portable plant is a 3D printer developed by Fraunhofer IPA. “We combine two materials for printing. We typically use polyamide for the part itself. And for spots where we ultimately want no material, we use a support material that we remove afterwards in a solvent,” explains Adamietz. Researchers can thus rely on free forming to manufacture three-dimensional structures.

The material used for printing is supplied as a roll of plastic cord, which is dissolved and placed in lines on the substrate. The researchers heat the assembly space too so that the surface remains homogeneous and the part is true to size.

A camera monitors the printing process throughout and helps remedy any errors at once – reducing scrap, improving quality, eliminating the need for time-consuming manual checks and ultimately ensuring that the parts produced are dimensionally accurate. Even if surface quality is ever less than perfect, a milling module can be used to rework the part.

What if a product, such as a bone drilling guide, must be sterile? A CassaMobile user can wet-clean the product, sterilize it with steam and package it to ensure sterility. To guarantee that the air inside the container is and remains pure, the air is continuously circulated and put through air filter units that remove any impurities. Last but not least, a central computer connects all the components and controls the entire production system.

Weitere Informationen:

https://www.fraunhofer.de/en/press/research-news/2018/July/a-factory-to-go.html

Joerg-Dieter Walz | Fraunhofer Research News

More articles from Machine Engineering:

nachricht Fine-tuning for additive production
15.11.2019 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Efficient engine production with the latest generation of the LZH IBK
13.11.2019 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>