Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A factory to go

04.07.2018

In the future, companies will be able to offer flexible production close to their customers. A fully automated production line can be housed inside a 20-foot ISO container, which a heavy truck can transport quickly to wherever it is needed. Medical products can be manufactured in close proximity to a hospital, for instance. Fraunhofer researchers teamed up with partners to develop this mobile factory in the scope of CassaMobile, an EU project.

Imagine you are late for the train once again. Things get hectic, you trip – and break your leg. A compound fracture! You will need surgery. But first a specialist must insert screws to ensure the bones heal properly. A surgeon will often use a bone drilling guide that is custom-made for each patient. Such guides help surgeons perfectly position the bone screws. Few companies produce bone drilling guides, however. Some patients must wait as long as a week for their tailored guide to arrive at their local hospital.


ISO freight container set up on campus.

(c) Fraunhofer IPA


A peek inside: a modular and intelligently connected manufacturing system with a tiny footprint.

(c) Fraunhofer IPA

Much faster deliveries

This should not take as long if these guides are made closer to the people who need them – close to hospitals, for example. But how can this become a reality? A mobile factory called CassaMobile is the answer. Led by the Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 12 European companies and institutes developed this mobile production facility in the scope of the EU’s CassaMobile project. Fraunhofer IPA supplied the idea and the concept.

“This mobile factory can reduce a delivery time of up to a week to just two days,” says Raphael Adamietz, IPA’s CassaMobile project manager. The Italian term “CassaMobile” refers to an ISO freight container. The exterior of the green and white container seems nondescript. But first impressions can be deceiving: Its interior boasts a smart mini-factory. This mobile unit can be used, for example, to 3D-print bone drilling guides and rework them in a milling machine before verifying their quality and sealing them in sterile packaging.

Transport by truck, supply electricity and start production

Manufacturers benefit in numerous ways from this portable plant. CassaMobile offers great flexibility. Researchers deliberately opted for dimensions just below the threshold for an oversize load, which would require an escort vehicle to accompany the truck on the road. Another advantage is that customers need to purchase equipment only once. They can then transport it to wherever they need it, saving money and reducing their environmental impact. As the container is fully equipped prior to transport, all the customer needs on site is electricity, water and compressed air. Production can begin immediately.

Manufacturing items in close proximity to the customer drastically reduces delivery times. And this could boost sales. After all, delivery speed is a decisive factor for customers when it comes to deciding which supplier to use.

Modular design for versatility

A CassaMobile container allows customers to manufacture tailor-made products very quickly virtually anywhere. This is possible thanks to the researchers’ commitment to a modular design. It is easy to modify or expand the supply chain. Users can also omit individual modules, if desired. This makes it possible to deploy the mobile factory to disaster areas after earthquakes, for instance.

Specialized response teams on site can then use a CassaMobile to produce items critical to restoring the supply of drinking water, for example. These containers could also benefit regions in which factories are unlikely to be erected due to a lack of sufficient infrastructure and suitable structures. By contrast, a CassaMobile is a standalone infrastructure. Another potential use is the production of something in short supply: spare parts for motor vehicles in Africa, for example.

Centerpiece: 3D printer

The most important module of this portable plant is a 3D printer developed by Fraunhofer IPA. “We combine two materials for printing. We typically use polyamide for the part itself. And for spots where we ultimately want no material, we use a support material that we remove afterwards in a solvent,” explains Adamietz. Researchers can thus rely on free forming to manufacture three-dimensional structures.

The material used for printing is supplied as a roll of plastic cord, which is dissolved and placed in lines on the substrate. The researchers heat the assembly space too so that the surface remains homogeneous and the part is true to size.

A camera monitors the printing process throughout and helps remedy any errors at once – reducing scrap, improving quality, eliminating the need for time-consuming manual checks and ultimately ensuring that the parts produced are dimensionally accurate. Even if surface quality is ever less than perfect, a milling module can be used to rework the part.

What if a product, such as a bone drilling guide, must be sterile? A CassaMobile user can wet-clean the product, sterilize it with steam and package it to ensure sterility. To guarantee that the air inside the container is and remains pure, the air is continuously circulated and put through air filter units that remove any impurities. Last but not least, a central computer connects all the components and controls the entire production system.

Weitere Informationen:

https://www.fraunhofer.de/en/press/research-news/2018/July/a-factory-to-go.html

Joerg-Dieter Walz | Fraunhofer Research News

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht New kinematics for milling – customized, high-precision manufacturing
04.07.2018 | Fraunhofer-Gesellschaft

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>