Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A factory to go

04.07.2018

In the future, companies will be able to offer flexible production close to their customers. A fully automated production line can be housed inside a 20-foot ISO container, which a heavy truck can transport quickly to wherever it is needed. Medical products can be manufactured in close proximity to a hospital, for instance. Fraunhofer researchers teamed up with partners to develop this mobile factory in the scope of CassaMobile, an EU project.

Imagine you are late for the train once again. Things get hectic, you trip – and break your leg. A compound fracture! You will need surgery. But first a specialist must insert screws to ensure the bones heal properly. A surgeon will often use a bone drilling guide that is custom-made for each patient. Such guides help surgeons perfectly position the bone screws. Few companies produce bone drilling guides, however. Some patients must wait as long as a week for their tailored guide to arrive at their local hospital.


ISO freight container set up on campus.

(c) Fraunhofer IPA


A peek inside: a modular and intelligently connected manufacturing system with a tiny footprint.

(c) Fraunhofer IPA

Much faster deliveries

This should not take as long if these guides are made closer to the people who need them – close to hospitals, for example. But how can this become a reality? A mobile factory called CassaMobile is the answer. Led by the Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 12 European companies and institutes developed this mobile production facility in the scope of the EU’s CassaMobile project. Fraunhofer IPA supplied the idea and the concept.

“This mobile factory can reduce a delivery time of up to a week to just two days,” says Raphael Adamietz, IPA’s CassaMobile project manager. The Italian term “CassaMobile” refers to an ISO freight container. The exterior of the green and white container seems nondescript. But first impressions can be deceiving: Its interior boasts a smart mini-factory. This mobile unit can be used, for example, to 3D-print bone drilling guides and rework them in a milling machine before verifying their quality and sealing them in sterile packaging.

Transport by truck, supply electricity and start production

Manufacturers benefit in numerous ways from this portable plant. CassaMobile offers great flexibility. Researchers deliberately opted for dimensions just below the threshold for an oversize load, which would require an escort vehicle to accompany the truck on the road. Another advantage is that customers need to purchase equipment only once. They can then transport it to wherever they need it, saving money and reducing their environmental impact. As the container is fully equipped prior to transport, all the customer needs on site is electricity, water and compressed air. Production can begin immediately.

Manufacturing items in close proximity to the customer drastically reduces delivery times. And this could boost sales. After all, delivery speed is a decisive factor for customers when it comes to deciding which supplier to use.

Modular design for versatility

A CassaMobile container allows customers to manufacture tailor-made products very quickly virtually anywhere. This is possible thanks to the researchers’ commitment to a modular design. It is easy to modify or expand the supply chain. Users can also omit individual modules, if desired. This makes it possible to deploy the mobile factory to disaster areas after earthquakes, for instance.

Specialized response teams on site can then use a CassaMobile to produce items critical to restoring the supply of drinking water, for example. These containers could also benefit regions in which factories are unlikely to be erected due to a lack of sufficient infrastructure and suitable structures. By contrast, a CassaMobile is a standalone infrastructure. Another potential use is the production of something in short supply: spare parts for motor vehicles in Africa, for example.

Centerpiece: 3D printer

The most important module of this portable plant is a 3D printer developed by Fraunhofer IPA. “We combine two materials for printing. We typically use polyamide for the part itself. And for spots where we ultimately want no material, we use a support material that we remove afterwards in a solvent,” explains Adamietz. Researchers can thus rely on free forming to manufacture three-dimensional structures.

The material used for printing is supplied as a roll of plastic cord, which is dissolved and placed in lines on the substrate. The researchers heat the assembly space too so that the surface remains homogeneous and the part is true to size.

A camera monitors the printing process throughout and helps remedy any errors at once – reducing scrap, improving quality, eliminating the need for time-consuming manual checks and ultimately ensuring that the parts produced are dimensionally accurate. Even if surface quality is ever less than perfect, a milling module can be used to rework the part.

What if a product, such as a bone drilling guide, must be sterile? A CassaMobile user can wet-clean the product, sterilize it with steam and package it to ensure sterility. To guarantee that the air inside the container is and remains pure, the air is continuously circulated and put through air filter units that remove any impurities. Last but not least, a central computer connects all the components and controls the entire production system.

Weitere Informationen:

https://www.fraunhofer.de/en/press/research-news/2018/July/a-factory-to-go.html

Joerg-Dieter Walz | Fraunhofer Research News

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht New kinematics for milling – customized, high-precision manufacturing
04.07.2018 | Fraunhofer-Gesellschaft

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>