Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D meets FRP: More flexibility for highly stressed components

08.03.2016

Individuality and adaptability need not be at odds with robustness and stability: It is envisaged that products such as seat shells for automobiles or medical prostheses which are required to meet all of these characteristics will be produced in future using a combination of 3D printing and fiber composite technology. 3D-printing ensures maximum flexibility in terms of the form and function of the component; the fiber composite plastic provides the stability required, even when subjected to high loads.

The Fraunhofer-Institute for Production Technology IPT in Aachen, in collaboration with its partners within various engineering groups, is currently investigating the combined manufacturing process as part of “LightFlex”, a research project funded by the Federal Ministry of Education and Research (BMBF) in Germany and will be presenting its initial results to the expert visitors to the JEC Trade Fair from 8-10 March in Paris.


Pilot demonstration part produced using the new process combination of 3D printing with FRP

Copyright: Fraunhofer IPT

Injection molded plastic components which are combined with fiber-composite materials for reinforcement, have one major drawback: it is difficult to adapt them to meet individual wishes or requirements. Since expensive and inflexible injection molding tools are used, only high-volume production is generally affordable.

Special functionalities or modifications made in the product development stage are always associated with costly and time-consuming post-processing steps. Low-volume runs or even prototype manufacture are frequently economically unviable due to the high costs involved.

In such cases, the Fraunhofer IPT and its partners in the “LightFlex” project are therefore planning to replace use of injection molded components with components produced via additive production: 3D-printing permits parts to be customized to meet virtually any requirements and to be provided with the capability to perform any function specified prior to being joined to a thermoplastic fiber composite material in order to achieve the required level of load capacity.

Organic sheets made of unidirectional, semi-finished materials are used in order to optimize the load-bearing capacity of parts used in FRP components. However instead of standard goods with fixed dimensions, near-net-shape organic sheets tailored to suit each individual application are produced using a facility constructed by the Fraunhofer IPT.

This minimizes material waste and results in significant savings in terms of the carbon fibers whose production is associated with high energy consumption. The facility used, had previously been developed by the Fraunhofer IPT as part of the BMBF-funded “E-Profit” project.

The Fraunhofer IPT combines the organic sheets with the 3D-printed structure in a thermoforming process. The 3D-printed part was provided by the project partner Wehl Group Sintertechnik GmbH in Salach.

Overall, the “LightFlex” project encompasses the entire process chain in terms of connected, adaptive production – from the production of semi-finished goods by the Institute for Plastics Processing (IKV) in industry and skilled trades at the RWTH university in Aachen and other partners through to laser trimming by the company Arges GmbH.

The partners will be presenting the production machine as well as a pilot demonstration part produced using the new process combination to visitors to the JEC World international fair for composite materials 2016 in Paris.

Partners in the “LightFlex – Photonic process chain for the flexible, generative, automated and cost-efficient manufacture of customized, hybrid lightweight engineering components from thermoplastic fiber composite plastic” project

- Adam Opel AG, Rüsselsheim
- AFPT GmbH, Dörth
- Arges GmbH, Wackersdorf
- Breyer GmbH Maschinenfabrik, Singen
- F.A. Kümpers GmbH & Co. KG, Rheine
- Fraunhofer-Institut für Produktionstechnologie IPT, Aachen
- Institut für Kunststoffverarbeitung (IKV) in Industrie und Handwerk an der RWTH Aachen
- KUKA Industries, Reis GmbH & Co. KG Maschinenfabrik, Geschäftsbereich Reis Extrusion, Merzenich
- Pixargus GmbH, Würselen
- Wehl Group Sintertechnik GmbH, Salach

This project is funded by the Federal Ministry for Education and Research in Germany (BMBF), reference number 03XP0013. The partners in the project are grateful for this opportunity to thank the BMBF for their support.

Weitere Informationen:

http://www.ipt.fraunhofer.de/en/Press/Pressreleases/20160308lightflexjec.html

Susanne Krause | Fraunhofer-Institut für Produktionstechnologie IPT

More articles from Machine Engineering:

nachricht Integrating One’s Sights on the Factor of 10: “futureAM – Next Generation Additive Manufacturing”
26.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht BladeFactory research project: Quicker rotor blade production and a higher quality result
12.10.2018 | Fraunhofer-Institut für Windenergiesysteme IWES

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>