Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray vision reveals how polymer solar cells wear out

13.10.2016

Scientists from Technical University of Munich have used the accurate x-ray vision provided by DESY’s radiation source PETRA III to observe the degradation of polymer solar cells. Their study suggests an approach for improving the manufacturing process to increase the long-term stability of such organic solar cells.

Unlike conventional solar cells, which are made of silicon, organic solar cells produce electricity in an active blended layer between two carbon-based materials. When one of these is a polymer, the resulting cell is often referred to as a polymer solar cell. These are particularly promising because they can be manufactured simply and cheaply.


The inner structure of the solar cell’s active layer without (left), with (centre) and after loss of solvent additive (right).

Image: Christoph Schaffer / TUM


Prof. Müller-Buschbaum with his Gruop in the laboratory

Photo: Andreas Heddergott / TUM

They can be used to make extremely lightweight, flexible and even semi-transparent solar cells using printing techniques on flexible polymer materials, opening up completely new fields of application. In general, however, organic solar cells are less efficient than silicon-based ones, and sometimes they have also a reduced lifetime.

Important inner values

The internal structure of the active layer is crucial in organic solar cells. When manufacturing them, the two materials that form the active layer have to separate out of a common solution, much like droplets of oil forming in water.

“It is important that the polymer domains formed in the process are a few tens of nanometres apart,” points out Christoph Schaffer, a PhD student in the Prof. Müller-Buschbaum, Chair for Functional Materials at TU Munich. “Only then positive and negative charge carriers can be efficiently produced in the active layer and separated from each other. If the structure is too coarse or too fine, this no longer happens, and the efficiency of the solar cell will decrease.”

Modern polymer solar cells often consist of so-called low-bandgap polymers, which absorb particularly large amounts of light. In many cases, these require the use of a solvent additive during the manufacturing process in order to achieve high efficiencies. However, this additive is controversial because it might further decrease the lifetime of the solar cells.

X-ray view into the solar cell

The scientists used DESY’s x-ray source PETRA III to study the degradation of such low-bandgap polymer solar cells with solvent additives in more detail. To this end, a solar cell of this type was exposed to simulated sunlight in a chamber, while its key parameters were continuously monitored.

Parallely, the scientists shone a narrowly collimated x-ray beam from PETRA III at the solar cell at different times, providing a picture of the internal structure of the active layer on a nanometre scale every few minutes.

“These measurements can be used to relate the structure to the performance of the solar cell and track it over time,” explains co-author Prof. Stephan Roth, who is in charge of DESY’s P03 beamline, where the experiments were conducted.

“The data reveals that domains that are on the scale of a few tens of nanometres shrink substantially during operation and that their geometric boundaries with other components disappear,” says Schaffer. At the same time, the measurements suggest that the amount of residual solvent additive decreases. The scientists attribute the measured drop in the efficiency of the solar cell to the observed decrease.

“Since there is evidence to suggest that the residual amount of solvent additive decreases, we have to assume that this process can limit the lifetime of the solar cells,” explains Müller-Buschbaum. “Therefore it is essential to come up with strategies for stabilising the structure. This could be achieved through chemical bonding between the polymer chains, or using customised encapsulating substances.”

Size is critical

In an earlier study, the Munich researchers observed the degradation of a different type of polymer solar cell. In that case, the efficiency was found to drop as a result of the active centres gradually growing in size during their operation. This suggested that it is in fact better to manufacture such solar cells with a suboptimal structure, i.e. one that is too fine, so that it can then grow to the optimum size during the first hours of operation.

The current study picks up the story where the previous one left off. “Our first study showed us that the efficiency dropped when the structure became coarser,” says Schaffer. “Exactly the opposite happens in the present study. This behaviour is precisely what we expected, because the composition of the active layer is different.”

“The materials in the first study tend to demix to a high degree,” explains Schaffer. “Here, the opposite is true, and we need the solvent additive in order to achieve the demixing of the materials that is needed to obtain high efficiencies. When the solvent additive disappears during operation, the structure becomes finer and therefore moves away from its optimum.”

Both these studies offer important approaches to optimising the manufacturing of organic solar cells, as co-author Roth points out: “The way these two studies fit together provides a wonderful example of how important synchrotron radiation has become, especially in applied research such as in the field of renewable energies.”

Publication:

Morphological Degradation in Low Bandgap Polymer Solar Cells – An In Operando Study; Christoph J. Schaffer, Claudia M. Palumbiny, Martin A. Niedermeier, Christian Burger, Gonzalo Santoro, Stephan V. Roth, and Peter Müller-Buschbaum
Advanced Energy Materials, 12.10.2016 – DOI: 10.1002/aenm.201600712

Contact:

Prof. Dr. Peter Müller-Buschbaum
Technical University of Munich
Department of Physics, E13
Chair for Functional Materials
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12451 – E-mail: muellerb@ph.tum.de

Weitere Informationen:

http://www.functmat.ph.tum.de/
https://www.tum.de/en/about-tum/news/press-releases/short/article/33448/

Dr. Ulrich Marsch | Technische Universität München

Further reports about: PETRA III X-ray X-ray vision nanometres organic solar cells solar cell

More articles from Power and Electrical Engineering:

nachricht Magnetization reversal achieved at room temperature using only an electric field
22.02.2019 | Tokyo Institute of Technology

nachricht The holy grail of nanowire production
20.02.2019 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>