Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WSU researchers discover unique microbial photosynthesis

09.01.2017

Finding could be used for waste treatment, energy

Researchers at Washington State University have discovered a new type of cooperative photosynthesis that could be used in engineering microbial communities for waste treatment and bioenergy production.


Conceptual model of a new type of anaerobic photosynthesis of G. sulfurreducens and P. aestuarii via direct, inter-species electron transfer.

Credit: Washington State University

They report today on the unique metabolic process seen for the first time in a pair of bacteria in Nature Communications.

Photosynthetic bacteria account for nearly half of the world's food production and carbon-based organic material. The research could also improve understanding of lake ecology.

Phototroph + electron generator

Prosthecochloris aestaurii , a green-tinged, plant-like microbe, comes from the extreme environment of Hot Lake, a high salinity lake in northern Okanogan County near Oroville, Wash. Discovered and identified a few years ago by researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory and Southern Illinois University, the bacterium is able to photosynthesize, using sunlight along with elemental sulfur or hydrogen sulfide to grow.

The researchers noticed that P. aestuarii tended to gather around a carbon electrode, an electricity conductor that they were operating in Hot Lake. The researchers isolated and grew P. aestuarii and determined that, similar to the way half of a battery works, the bacterium is able to grab electrons from a solid electrode and use them for photosynthesis. The pink-colored Geobacter sulfurreducens meanwhile, is known for its ability to convert waste organic matter to electricity in microbial fuel cells. The bacterium is also used in environmental cleanup.

G. sulfurreducens, like animals and humans, can't photosynthesize. It consumes organic compounds, such as acetate, and "breathes" out carbon dioxide.

The bacterium is known for its ability to donate electrons to a solid electrode. As it consumes acetate, it generates electrons, which can be collected as electricity.

Microbes paired up in WSU lab

Led by Haluk Beyenal, the Paul Hohenschuh Distinguished Professor in the WSU Gene and Linda Voiland School of Chemical Engineering and Bioengineering, and postdoctoral researcher Phuc Ha, the research team surmised that the bacteria might be able to help each other grow and put them together in the lab.

The researchers found that P. aestuarii could accept electrons generated from G. sulfurreducens and use them in a new type of anaerobic photosynthesis never before seen. Similar to how a battery or fuel cell works, the bacteria transfer electrons. They feed off each other to grow under conditions in which neither could grow independently.

Ecology-friendly implications

From an ecological perspective, this new form of metabolism may play an important role in carbon cycling in oxygen free zones of poorly mixed freshwater lakes. It may also present new possibilities for engineering microbial communities for waste treatment and bioenergy production.

"We think this could be a common bio-electrochemical process in nature," said Beyenal, whose team is working to better understand the electron transfer mechanism.

###

The work was funded by the U.S. Department of Energy. Researchers from PNNL and China University of Geoscience also collaborated on the project.

The work is in keeping with WSU's Grand Challenges, a suite of research initiatives aimed at large societal issues. It is particularly relevant to the challenge of sustainable resources and its theme of meeting sustainable energy needs while protecting the environment.

Media Contact

Haluk Beyenal
beyenal@wsu.edu
509-335-6607

 @WSUNews

http://www.wsu.edu 

Haluk Beyenal | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>