Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Working Toward the Next Battery Breakthrough

08.06.2010
With more patents than any other woman, UB scientist brings fresh perspective to the nation's electrical grid

If battery-making is an art, then University at Buffalo scientist Esther Takeuchi is among its most prolific masters, with more than 140 U.S. patents, all in energy storage.

Takeuchi developed the battery that made possible the first implantable cardiac defibrillators, a feat that was recognized last fall with the National Medal of Technology and Innovation from President Obama. Millions of heart patients worldwide have benefited from the implantable cardiac defibrillators powered by Takeuchi's silver vanadium oxide battery. With funding from the National Institutes of Health, she is developing new cathode materials for improved implantable cardiac defibrillator batteries, with her latest advances on this project recently published in the Journal of Power Sources.

A slide show highlighting Takeuchi's biomedical research is available on YouTube: http://www.youtube.com/watch?v=Gm8MqA3u4MQ.

But now Takeuchi is applying to the electrical grid -- the vast, national network that delivers energy from suppliers to consumers -- her unique perspective on how to coax the best performance out of battery chemicals.

Having two years ago made the jump from industry to academia after 22 years, Takeuchi, a SUNY Distinguished Professor in UB's School of Engineering and Applied Sciences, may be just the scientist to find the right combination of materials that will usher in the next energy storage revolution.

"Esther has a unique perspective," says Amy Marschilok, PhD, UB research assistant professor of engineering, who has worked with Takeuchi for more than six years. "In developing the silver vanadium oxide material that now powers the implantable cardiac defibrillator, she took an idea and turned it into a functional battery."

"Now she's taking that experience and applying it to these very different areas," Marschilok continues. "Could a variation on one of the battery systems one day be applied to powering homes and buildings? That's the kind of perspective she has and it's what battery research really needs."

In the past year, Takeuchi been awarded more than $1 million in funding by several federal agencies to develop better materials for batteries and ways to prevent their degradation.

With a new project recently funded by the New York State Energy Research and Development Authority, Takeuchi and her husband, SUNY Distinguished Teaching Professor Kenneth Takeuchi, are developing new, low-cost materials for rechargeable batteries.

The focus is on developing a distributed grid where renewable power is generated closer to where it's needed, rather than in a central place and transmitted long distances, the way the current grid operates.

"One of the key challenges in moving from our fossil-fuel based system to greener, renewable forms of energy is that whether you're talking about solar or wind power, these forms of energy are intermittent," says Takeuchi.

And even though the sun may be shining or the wind may be blowing, it's unlikely that either phenomenon will occur at a constant rate over time.

"There will be fairly large fluctuations in the amount of power being generated," she says.

That makes a robust, reliable method of storing energy absolutely critical. And it's a feature that has been essential in the life-saving biomedical devices Takeuchi has worked on in the past.

"To generate energy at a usable, consistent level, we will need to couple a dependable, energy-storage system with renewable power sources," she says.

Takeuchi's work on biomedical devices has provided her with an unusual appreciation for the properties of batteries that have exceptional longevity. The typical lifetime of a battery in an implantable device is 5-10 years and Takeuchi is one of those leading the push to increase that for both biomedical and utility applications.

"Whether you're talking about the power grid, electrical vehicles or biomedical devices the quest is for low cost, longer life and rechargeability," she says.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Power and Electrical Engineering:

nachricht IHP technology ready for space flights
20.08.2018 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries
20.08.2018 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>