Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WindForS Research Cluster Establishes Office and Launches Further Research Project

04.02.2014
Wind Energy for Complex Terrain

Use of wind energy at challenging sites such as the mountainous regions of southern Germany is at the heart of WindForS, the wind energy research cluster in southern Germany.

For a period of three years, the Baden-Württemberg Ministry for Science, Research and the Arts is providing the funds for a WindFors office at the University of Stuttgart. The initial funding is meant to help professionalise the cluster’s activities and enable its members to start work on the proposed goals. The WindForS office will be the first point of contact for the proposed test field in southern Germany and will press ahead with its realisation.

In order to reach the goals set for the installation of wind power capacity onshore, it will be crucially important that turbines can be operated on difficult terrain such as woods, montainous terrain and on ridges. On account of their meteorological particularities and their complex loading situation these turbines pose a significant challenge to wind turbine manufacturers.

Against this background, WindForS aims to continually improve the economic viability of wind energy use in complex-mountainous terrain and at the same time to take into account ecological and landscape aspects. To this end, the WindForS partners intend to develop technical and non-technical solutions for wind energy use on sites that are topologically difficult such as the mountainous regions of southern Germany.

The research cluster includes as partners the University of Stuttgart, Karlsruhe Institute of Technology, the University of Tübingen, TU München, the Centre for Solar Energy and Hydrogen Research Baden-Württemberg as well as the Universities of Applied Sciences of Aalen and Esslingen. The WindForS office will be mainly concerned with initiating further research projects on a national and international level. It is headed by Andreas Rettenmeier who has been employed with the wind energy unit at the University of Stuttgart’s Institute of Aircraft Design since 2004 and played a vital part in initiating WindForS.

KonTest Project – Test Field Design
Only recently “KonTest“, the second WindForS research project funded by the Federal Ministry for the Environment, has been launched. The main purpose of the two-year collaborative project is to design a wind test field in southern Germany and to find a test field location in Baden-Württemberg or Bavaria. The project results will subsequently be used in setting up a wind test site in complex mountainous terrain. In addition to meteorological masts, one or two research wind turbines of the 600-900 KW class with rotor diameters of about 40 - 80 m will be installed. These will be used to prepare, test and validate new technologies in terms of materials, design methods, aerodynamics, load monitoring, noise reduction, manufacturing engineering, operation management, measurement tools and techniques as well as monitoring. Further research will focus on energy storage and grid integration. Taking into account the experiences gained in, among others, the “alpha ventus” offshore project, issues of landscape aesthetics and ecology are seen as of vital importance and will therefore play an important part in designing the test field as well as in its operation.
For further information please contact:
Andreas Rettenmeier, Universität Stuttgart, Stiftungslehrstuhl Windenergie, Tel. +49 711 685-68325

email: rettenmeier (at) windfors.de, www.windfors.de

For the KonTest project: Jan Anger, Tel. +49 711 685-68289,
email: Anger (at) ifb.uni-stuttgart.de
Andrea Mayer-Grenu, Universität Stuttgart, Abt. Hochschulkommunikation,
Tel. 0711/685-82176, email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.windfors.de
http://www.uni-stuttgart.de

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>