Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waste silicon gets new life in lithium-ion batteries at Rice University

05.09.2012
Researchers at Rice University and the Université catholique de Louvain, Belgium, have developed a way to make flexible components for rechargeable lithium-ion (LI) batteries from discarded silicon.
The Rice lab of materials scientist Pulickel Ajayan created forests of nanowires from high-value but hard-to-recycle silicon. Silicon absorbs 10 times more lithium than the carbon commonly used in LI batteries, but because it expands and contracts as it charges and discharges, it breaks down quickly.

The Ajayan lab reports this week in the journal Proceedings of the National Academy of Science on its technique to make carefully arrayed nanowires encased in electrically conducting copper and ion-conducting polymer electrolyte into an anode. The material gives nanowires the space to grow and shrink as needed, which prolongs their usefulness. The electrolyte also serves as an efficient spacer between the anode and cathode.

Transforming waste into batteries should be a scalable process, said Ajayan, Rice’s M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry. The researchers hope their devices are a step toward a new generation of flexible, efficient, inexpensive batteries that can conform to any shape.

Co-lead authors Arava Leela Mohana Reddy, a Rice research scientist, and Alexandru Vlad, a former research associate at Rice and now a postdoctoral researcher at the Université catholique de Louvain, were able to pull multiple layers of the anode/electrolyte composite from a single discarded wafer. Samples of the material made at Rice look like strips of white tape or bandages.

They used an established process, colloidal nanosphere lithography, to make a silicon corrosion mask by spreading polystyrene beads suspended in liquid onto a silicon wafer. The beads on the wafer self-assembled into a hexagonal grid – and stayed put when shrunken chemically. A thin layer of gold was sprayed on and the polystyrene removed, which left a fine gold mask with evenly spaced holes on top of the wafer. “We could do this on wafers the size of a pizza in no time,” Vlad said.

The mask was used in metal-assisted chemical etching, in which the silicon dissolved where it touched the metal. Over time in a chemical bath, the metal catalyst would sink into the silicon and leave millions of evenly spaced nanowires, 50 to 70 microns long, poking through the holes.

The researchers deposited a thin layer of copper on the nanowires to improve their ability to absorb lithium and then infused the array with an electrolyte that not only transported ions to the nanowires but also served as a separator between the anode and a later-applied cathode.

“Etching is not a new process,” Reddy said. “But the bottleneck for battery applications had always been taking nanowires off the silicon wafer because pure, free-standing nanowires quickly crumble.” The electrolyte engulfs the nanowire array in a flexible matrix and facilitates its easy removal. “We just touch it with the razor blade and it peels right off,” he said. The mask is left on the unperturbed wafer to etch a new anode.

When combined with a spray-on current collector on one side and a cathode and current collector on the other, the resulting battery showed promise as it delivered 150 milliamp hours per gram with little decay over 50 charge/discharge cycles. The researchers are working to enhance those qualities and testing the anodes in standard battery configurations.

“The novelty of the approach lies in its inherent simplicity,” Reddy said. “We hope the present process will provide a solution for electronics waste management by allowing a new lease on life for silicon chips.”

Co-authors are intern Anakha Ajayan and graduate student Neelam Singh of Rice and professors Jean-Francois Gohy and Sorin Melinte of the Université catholique de Louvain.

The Army Research Office supported research at Rice, and the National Scientific Research Foundation, the Special Research Fund, the TINTIN project – ARC, the French Community of Belgium, the Fund for Scientific Research and the Wallonne Region (Programme ERABLE) supported research in Belgium.
Read the abstract at www.pnas.org/cgi/doi/10.1073/pnas.1208638109
Follow Rice News and Media Relations via Twitter @RiceUNews

David Ruth | EurekAlert!
Further information:
http://www.rice.edu
http://news.rice.edu/2012/09/04/waste-silicon-gets-new-life-in-lithium-ion-batteries-at-rice-university/

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>