Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Tennessee professor and student develop device to detect biodiesel contamination

06.09.2013
The probability of contamination of diesel fuel is increasing as biodiesel becomes more popular and as distribution and supply systems use the same facilities to store and transport the 2 types of fuels

In 2010, a Cathay Pacific Airways plane was arriving in Hong Kong when the engine control thrusts seized up and it was forced to make a hard landing—injuring dozens. The potential culprit? Contaminated fuel.

The probability of contamination of diesel fuel is increasing as biodiesel becomes more popular and as distribution and supply systems use the same facilities to store and transport the two types of fuels.

A professor and student team at the University of Tennessee, Knoxville, has developed a quick and easy-to-use sensor that can detect trace amounts of biodiesel contamination in diesel.

The work of chemistry professor Ziling (Ben) Xue and doctoral student Jonathan Fong has been published in the journal Chemical Communications.

"The ability to detect biodiesel at various concentrations in diesel is an important goal in several industries," said Xue. "There is particular concern over biodiesel contamination in jet fuel, because at higher levels it can impact the thermal stability and freezing point of jet fuel leading to deposits in the fuel system or gelling of the fuel. These issues can result in jet engine operability problems and possible engine flameout."

Xue and Fong tested several dyes and found that the dye Nile blue chloride dissolved in alcohol, can be made into a thin film with high sensitivity toward biodiesel contamination in jet fuel. They tested small strips of the sensor and found it could successfully detect amounts of biodiesel contaminant in diesel as low as 0.5 parts per million—ten times below the allowable limit of 5 ppm in the U.S.—in less than 30 minutes.

With diesel, because it does not displace alcohol in the dye, the sensor remains blue. However, biodiesel replaces the alcohol, changing the sensor color to pink. This change can be seen with the naked eye.

"Right now, there is a dire need for quick, easy and direct detection of biodiesel in diesel and biodiesel-diesel blends to ensure safe and efficient-performing fuels," said Fong. "The sensors we developed are intrinsically small, easy to use, inexpensive and can be mass produced for disposable applications"

The researchers say the sensor can be deployed in a portable reader for use in the field. The sensor can also be used for drivers delivering biodiesel-diesels to gas stations to quickly verify that the blends are accurate.

They are working with the UT Research Foundation to find partners to commercialize the technology.

Whitney Heins | EurekAlert!
Further information:
http://www.utk.edu

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>