Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the mechanism for generating electric current without energy consumption at room temperature

28.12.2015

A group of researchers in Japan and China identified the requirements for the development of new types of extremely low power consumption electric devices by studying Cr-doped (Sb, Bi)2Te3 thin films. This study has been reported in Nature Communications.

At extremely low temperatures, an electric current flows around the edge of the film without energy loss, and under no external magnetic field. This attractive phenomenon is due to the material's ferromagnetic properties; however, so far, it has been unclear how the material gains this property. For the first time, researchers have revealed the mechanism by which this occurs.


Ferromagnetism mediated by Sb or Te atoms

(Credit: Hiroshima University)

“Hopefully, this achievement will lead to the creation of novel materials that operate at room temperature in the future,” said Akio Kimura, a professor at Hiroshima University and a member of the research group.

Their achievement can be traced back to the discovery of the quantum Hall effect in the 1980’s, where an electric current flows along an edge (or interface) without energy loss. However, this requires both a large external magnetic field and an extremely low temperature. This is why practical applications have not been possible. Researchers believed that this problem could be overcome with new materials called topological insulators that have ferromagnetic properties such as those found in Cr-doped (Sb, Bi)2Te3.

A topological insulator, predicted in 2005 and first observed in 2007, is neither a metal nor an insulator, and has exotic properties. For example, an electric current is generated only at the surface or the edge of the material, while no electric current is generated inside it. It looks as if only the surface or the edge of the material has metallic properties, while on the inside it is an insulator.

At extremely low temperatures, a thin film made of Cr-doped (Sb, Bi)2Te3 shows a peculiar phenomenon. As the film itself is ferromagnetic, an electric current is spontaneously generated without an external magnetic field and electric current flows only around the edge of the film without energy loss. However, it was previously unknown as to why Cr-doped (Sb, Bi)2Te3 had such ferromagnetic properties that allowed it to generate electric current.

“That’s why we selected the material as the object of our study,” said Professor Kimura.

Because Cr is a magnetic element, a Cr atom is equivalent to an atomic-sized magnet. The N-S orientations of such atomic-sized magnets tend to be aligned in parallel by the interactions between the Cr atoms. When the N-S orientations of Cr atoms in Cr-doped (Sb, Bi)2Te3 are aligned in parallel, the material exhibits ferromagnetism. However, the interatomic distances between the Cr atoms in the material are, in fact, too long to interact sufficiently to make the material ferromagnetic.

The group found that the non-magnetic element atoms, such as the Sb and Te atoms, mediate the magnetic interactions between Cr atoms and serve as the glue to fix the N-S orientations of Cr atoms that face one direction. In addition, the group expects that its finding will provide a way to increase the critical temperature for relevant device applications.

The experiments for this research were mainly conducted at SPring-8. “We would not have achieved perfect results without the facilities and the staff there. They devoted themselves to detecting the extremely subtle magnetism that the atoms of non-magnetic elements exhibit with extremely high precision. I greatly appreciate their efforts,” Kimura said.

For further information, please contact:

Yujiro Tokumitsu

Hiroshima University

+81-82-424-4397

pr-research@office.hiroshima-u.ac.jp

www.hiroshima-u.ac.jp

 

Full bibliographic information 【Published article】
Ye, M. et al. Carrier-mediated ferromagnetism in the magnetic topological insulator Cr-doped (Sb,Bi)2Te3. Nat. Commun. 6:8913 doi: 10.1038/ncomms9913 (2015).
http://www.nature.com/ncomms/2015/151119/ncomms9913/full/ncomms9913.html

【Authors and their affiliations】
Mao Ye1,2, Wei Li1,2, Siyuan Zhu3, Yukiharu Takeda4, Yuji Saitoh4, Jiajia Wang5, Hong Pan6, Munisa Nurmamat3, Kazuki Sumida3, Fuhao Ji6, Zhen Liu6, Haifeng Yang1, Zhengtai Liu1, Dawei Shen1,2, Akio Kimura3, Shan Qiao1,2,5, and Xiaoming Xie1,2,5
1 State Key Laboratoryof Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
2 CAS-Shanghai Science Research Center
3 Graduate School of Science, Hiroshima University
4 Condensed Matter Science Division, Quantum Beam Science Center, Japan Atomic Energy Agency
5 School of physical science and technology, ShanghaiTech University
6 Department of Physics, State Key Laboratory of Surface Physics, and Laboratory of Advanced Materials, Fudan University

Yujiro Tokumitsu | AlphaGalileo

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>