Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Amherst Spinoff Raises $25 Million for Ethanol Breakthrough

20.11.2008
SunEthanol, a spinoff company from the University of Massachusetts Amherst, has raised $25 million in Series B financing from a consortium of funders including BP and Soros Fund Management LLC, and is changing its name effective immediately to Qteros. The new name refers to its breakthrough Q Microbe™ technology for producing sustainable liquid fuel from non-food plants and wastes.

Leading the Series B financing is new investor Venrock, along with previous investor Battery Ventures. Also participating in the Series B financing are Soros Fund Management LLC and BP, both new, and Series A investors Long River Ventures and Camros Capital.

Massachusetts Gov. Deval Patrick announced Qteros’ new name and Series B funding in a speech Nov. 18 in Boston at the Fourth Conference on Clean Energy during Clean Energy Week in Massachusetts. Qteros has been singled out as one of the state’s premier clean-tech companies. It will be celebrated on Thursday, Nov. 20 along with other outstanding Massachusetts green companies at the "Green Tie Gala" at Boston’s Museum of Science.

The biofuels startup that began with UMass Amherst microbiology Professor Susan Leschine's discovery in the woods of Massachusetts of an exceptionally efficient microbe for making cellulosic ethanol will now scale up its process from the pilot plant to commercial operations, and hire additional engineers and scientists, company officials said.

Gov. Patrick has been a staunch supporter of the company, describing it as discovering and now commercializing a “transformational breakthrough.” Other state and national leaders have also recognized Qteros this year as one of the most promising emerging clean energy companies, and it has received four U.S. Department of Energy grants and a grant from the National Science Foundation.

“Qteros and the Q Microbe™ will make a major contribution to achieving the two-pronged objective of energy independence and reduced emissions of global warming gases,” said company President and CEO Bill Frey, who spent 28 years at DuPont and led DuPont’s biofuels division before taking the reins of SunEthanol in June. "We are very pleased to be working with some of the best, value-add investors in the world. These partners will allow us to get to market with people who are experts in building very large and valuable companies."

Steve Goldby, the Venrock partner on the investment, commented, “The past century has seen extraordinary innovation in chemistry, and we believe that fundamental biology will hold the secrets of world-class innovation for the next century. Qteros’ microbial approach to the production of cellulosic ethanol has the potential to revolutionize the production of clean energy for the country.”

Congress has mandated production of 36 billion gallons a year of biofuels — 16 billion gallons of which must be advanced cellulosic biofuels such as Qteros is working to produce. That would figure prominently in President-elect Obama's plan to reduce or eliminate America's dependence on foreign fossil fuels by investing $150 billion in clean energy technology over 10 years. Qteros is poised to be a key contributor to realizing that goal.

Leschine, Qteros’ Chief Scientist and co-founder, is the UMass Amherst professor who, nearly 10 years ago, first collected a sample of the Q Microbe™ near the Quabbin Reservoir in Massachusetts. She sees the company's success as the realization of her dream of finding a “super-bug” that can leapfrog the conventional enzyme technologies in terms of cost/benefit, and help solve the world's energy crisis.

“In the past year, we've made great strides in understanding the inner workings of Q, basic knowledge that is enabling the advancement of this technology and from which Qteros is discovering ever-more productive strains of this amazing microbe,” Leschine said.

Led by Sarad Parekh, vice president of R&D, the Qteros lab team has already achieved an over 15-fold increase in productivity with its C3 (Complete Cellulosic Conversion) technology platform for using the Q Microbe™ to convert cellulosic plant material to ethanol.

“Over the last year, the SunEthanol team has demonstrated that the patented Q Microbe™ and the 'C3' process is the industry’s most advanced cellulosic ethanol technology platform,” said Jason Matlof, partner at Battery Ventures. “This infusion of capital and the addition of world-class strategic partners will further enable the team to achieve our goal of commercializing a sustainable and cost-effective cellulosic biofuels platform.”

According to Founder and Executive Vice President Jef Sharp, “This investment in Qteros during difficult financial times is a reminder that new technologies will be the generators of the clean tech future. Qteros’ success will help to ignite the next economic expansion while helping to solve climate change and sustainable energy challenges.”

“Biofuels are the only near-term alternative to gasoline for liquid transportation fuels,” added Frey. “With our company’s new financing from this group of experienced partners, we will be able to realize the full potential of the Q Microbe™ to convert cellulosic feedstocks into ethanol, and to help move America towards energy independence.”

Allison Lenthall | Newswise Science News
Further information:
http://www.qteros.com
http://www.umass.edu/newsoffice

More articles from Power and Electrical Engineering:

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Behavior-influencing policies are critical for mass market success of low carbon vehicles
17.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

In the ocean's twilight zone, tiny organisms may have giant effect on Earth's carbon cycle

19.07.2018 | Earth Sciences

Lying in a foreign language is easier

19.07.2018 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>