Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrathin but fully packaged high-resolution camera

25.03.2020

Biologically inspired ultrathin arrayed camera captures super-resolution images

The unique structures of biological vision systems in nature inspired scientists to design ultracompact imaging systems. A research group led by Professor Ki-Hun Jeong have made an ultracompact camera that captures high-contrast and high-resolution images.


The ultrathin camera.

Credit: Professor Ki-Hun Jeong, KAIST

Usage Restrictions: News organizations may use or redistribute this image, with proper attribution, as part of news coverage of this paper only.


Super-resolution imaging by array images.

Credit: Professor Ki-Hun Jeong, KAIST

Usage Restrictions: News organizations may use or redistribute this image, with proper attribution, as part of news coverage of this paper only.

Fully packaged with micro-optical elements such as inverted micro-lenses, multilayered pinhole arrays, and gap spacers on the image sensor, the camera boasts a total track length of 740 μm and a field of view of 73°.

Inspired by the eye structures of the paper wasp species Xenos peckii, the research team completely suppressed optical noise between micro-lenses while reducing camera thickness. The camera has successfully demonstrated high-contrast clear array images acquired from tiny micro lenses.

To further enhance the image quality of the captured image, the team combined the arrayed images into one image through super-resolution imaging.

An insect's compound eye has superior visual characteristics, such as a wide viewing angle, high motion sensitivity, and a large depth of field while maintaining a small volume of visual structure with a small focal length. Among them, the eyes of Xenos peckii and an endoparasite found on paper wasps have hundreds of photoreceptors in a single lens unlike conventional compound eyes.

In particular, the eye structures of an adult Xenos peckii exhibit hundreds of photoreceptors on an individual eyelet and offer engineering inspiration for ultrathin cameras or imaging applications because they have higher visual acuity than other compound eyes.

For instance, Xenos peckii's eye-inspired cameras provide a 50 times higher spatial resolution than those based on arthropod eyes. In addition, the effective image resolution of the Xenos peckii's eye can be further improved using the image overlaps between neighboring eyelets. This unique structure offers higher visual resolution than other insect eyes.

The team achieved high-contrast and super-resolution imaging through a novel arrayed design of micro-optical elements comprising multilayered aperture arrays and inverted micro-lens arrays directly stacked over an image sensor. This optical component was integrated with a complementary metal oxide semiconductor image sensor.

This is first demonstration of super-resolution imaging which acquires a single integrated image with high contrast and high resolving power reconstructed from high-contrast array images. It is expected that this ultrathin arrayed camera can be applied for further developing mobile devices, advanced surveillance vehicles, and endoscopes.

Professor Jeong said, "This research has led to technological advances in imaging technology. We will continue to strive to make significant impacts on multidisciplinary research projects in the fields of microtechnology and nanotechnology, seeking inspiration from natural photonic structures."

###

This work was featured in Light Science & Applications last month and was supported by the National Research Foundation (NRF) and the Ministry of Health and Welfare (MOHW) of Korea.

Media Contact

Younghye Cho
younghyecho@kaist.ac.kr
82-423-502-294

 @KAISTPR

http://www.kaist.ac.kr 

Younghye Cho | EurekAlert!
Further information:
http://news.kaist.ac.kr/newsen/html/news/?mode=V&mng_no=6631&skey=&sval=&list_s_date=&list_e_date=&GotoPage=1
http://dx.doi.org/10.1038/s41377-020-0261-8

More articles from Power and Electrical Engineering:

nachricht Electric jolt to carbon makes better water purifier
23.03.2020 | Nagoya University

nachricht The Smallest Microelectronic Robot in the World
23.03.2020 | Technische Universität Chemnitz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

Im Focus: Shaking off the correlated-electron traffic jam

An international team of researchers from Switzerland, Germany, the USA and Great Britain has uncovered an anomalous metallic behavior in an otherwise insulating ceramic material. The team used ultrashort light pulses with a wide range of colors to watch what happens when the insulating quasi two-dimensional material La2CuO4 (LCO) becomes a three-dimensional metal through laser irradiation. Surprisingly, the researchers found that specific vibrations of the crystal lattice are involved in this metallization process. A careful computational investigation revealed that the same vibrations that show up in this ultrafast movie can destabilize the insulating behavior all by themselves.

The condensed-matter physics world was shaken up when high-temperature superconductivity was reported in a copper oxide material in 1986 by Alex Müller and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

70th Lindau Meeting: 660 young scientists from around 100 countries experience first “Lindau Moment" today

02.03.2020 | Event News

 
Latest News

New 3D view of methane tracks sources

25.03.2020 | Earth Sciences

Ultrathin but fully packaged high-resolution camera

25.03.2020 | Power and Electrical Engineering

Teamwork in a cell

25.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>