Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-light gloves let users 'touch' virtual objects

16.10.2018

Engineers and software developers around the world are seeking to create technology that lets users touch, grasp and manipulate virtual objects, while feeling like they are actually touching something in the real world.

Scientists at EPFL and ETH Zurich have just made a major step toward this goal with their new haptic glove, which is not only lightweight - under 8 grams per finger - but also provides feedback that is extremely realistic.


The glove weight only 8g per finger.

Credit: Marc Delachaux / EPFL 2018

The glove is able to generate up to 40 Newtons of holding force on each finger with just 200 Volts and only a few milliWatts of power. It also has the potential to run on a very small battery. That, together with the glove's low form factor (only 2 mm thick), translates into an unprecedented level of precision and freedom of movement.

"We wanted to develop a lightweight device that - unlike existing virtual-reality gloves - doesn't require a bulky exoskeleton, pumps or very thick cables," says Herbert Shea, head of EPFL's Soft Transducers Laboratory (LMTS).

The scientists' glove, called DextrES, has been successfully tested on volunteers in Zurich and will be presented at the upcoming ACM Symposium on User Interface Software and Technology (UIST).

Fabric, metal strips and electricity

DextrES is made of nylon with thin elastic metal strips running over the fingers. The strips are separated by a thin insulator. When the user's fingers come into contact with a virtual object, the controller applies a voltage difference between the metal strips causing them to stick together via electrostatic attraction - this produces a braking force that blocks the finger's or thumb's movement. Once the voltage is removed, the metal strips glide smoothly and the user can once again move his fingers freely.

Tricking your brain

For now the glove is powered by a very thin electrical cable, but thanks to the low voltage and power required, a very small battery could eventually be used instead. "The system's low power requirement is due to the fact that it doesn't create a movement, but blocks one", explains Shea. The researchers also need to conduct tests to see just how closely they have to simulate real conditions to give users a realistic experience.

"The human sensory system is highly developed and highly complex. We have many different kinds of receptors at a very high density in the joints of our fingers and embedded in the skin. As a result, rendering realistic feedback when interacting with virtual objects is a very demanding problem and is currently unsolved. Our work goes one step in this direction, focusing particularly on kinesthetic feedback," says Otmar Hilliges, head of the Advanced Interactive Technologies Lab at ETH Zurich.

In this joint research project, the hardware was developed by EPFL at its Microcity campus in Neuchâtel, and the virtual reality system was created by ETH Zurich, which also carried out the user tests.

"Our partnership with the EPFL lab is a very good match. It allows us to tackle some of the longstanding challenges in virtual reality at a pace and depth that would otherwise not be possible," adds Hilliges.

The next step will be to scale up the device and apply it to other parts of the body using conductive fabric. "Gamers are currently the biggest market, but there are many other potential applications - especially in healthcare, such as for training surgeons. The technology could also be applied in augmented reality," says Shea.

###

Press kit: http://bit.ly/2OnD0x9

Media Contact

Herbert Shea
herbert.shea@epfl.ch
41-216-936-663

 @EPFL_en

http://www.epfl.ch/index.en.html 

Herbert Shea | EurekAlert!
Further information:
https://actu.epfl.ch/news/ultra-light-gloves-let-users-touch-virtual-objects/

More articles from Power and Electrical Engineering:

nachricht First-ever visualizations of electrical gating effects on electronic structure
18.07.2019 | University of Warwick

nachricht New safer, inexpensive way to propel small satellites
16.07.2019 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Genetic differences between strains of Epstein-Barr virus can alter its activity

18.07.2019 | Health and Medicine

Algae-killing viruses spur nutrient recycling in oceans

18.07.2019 | Life Sciences

Machine learning platform guides pancreatic cyst management in patients

18.07.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>