Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-light gloves let users 'touch' virtual objects

16.10.2018

Engineers and software developers around the world are seeking to create technology that lets users touch, grasp and manipulate virtual objects, while feeling like they are actually touching something in the real world.

Scientists at EPFL and ETH Zurich have just made a major step toward this goal with their new haptic glove, which is not only lightweight - under 8 grams per finger - but also provides feedback that is extremely realistic.


The glove weight only 8g per finger.

Credit: Marc Delachaux / EPFL 2018

The glove is able to generate up to 40 Newtons of holding force on each finger with just 200 Volts and only a few milliWatts of power. It also has the potential to run on a very small battery. That, together with the glove's low form factor (only 2 mm thick), translates into an unprecedented level of precision and freedom of movement.

"We wanted to develop a lightweight device that - unlike existing virtual-reality gloves - doesn't require a bulky exoskeleton, pumps or very thick cables," says Herbert Shea, head of EPFL's Soft Transducers Laboratory (LMTS).

The scientists' glove, called DextrES, has been successfully tested on volunteers in Zurich and will be presented at the upcoming ACM Symposium on User Interface Software and Technology (UIST).

Fabric, metal strips and electricity

DextrES is made of nylon with thin elastic metal strips running over the fingers. The strips are separated by a thin insulator. When the user's fingers come into contact with a virtual object, the controller applies a voltage difference between the metal strips causing them to stick together via electrostatic attraction - this produces a braking force that blocks the finger's or thumb's movement. Once the voltage is removed, the metal strips glide smoothly and the user can once again move his fingers freely.

Tricking your brain

For now the glove is powered by a very thin electrical cable, but thanks to the low voltage and power required, a very small battery could eventually be used instead. "The system's low power requirement is due to the fact that it doesn't create a movement, but blocks one", explains Shea. The researchers also need to conduct tests to see just how closely they have to simulate real conditions to give users a realistic experience.

"The human sensory system is highly developed and highly complex. We have many different kinds of receptors at a very high density in the joints of our fingers and embedded in the skin. As a result, rendering realistic feedback when interacting with virtual objects is a very demanding problem and is currently unsolved. Our work goes one step in this direction, focusing particularly on kinesthetic feedback," says Otmar Hilliges, head of the Advanced Interactive Technologies Lab at ETH Zurich.

In this joint research project, the hardware was developed by EPFL at its Microcity campus in Neuchâtel, and the virtual reality system was created by ETH Zurich, which also carried out the user tests.

"Our partnership with the EPFL lab is a very good match. It allows us to tackle some of the longstanding challenges in virtual reality at a pace and depth that would otherwise not be possible," adds Hilliges.

The next step will be to scale up the device and apply it to other parts of the body using conductive fabric. "Gamers are currently the biggest market, but there are many other potential applications - especially in healthcare, such as for training surgeons. The technology could also be applied in augmented reality," says Shea.

###

Press kit: http://bit.ly/2OnD0x9

Media Contact

Herbert Shea
herbert.shea@epfl.ch
41-216-936-663

 @EPFL_en

http://www.epfl.ch/index.en.html 

Herbert Shea | EurekAlert!
Further information:
https://actu.epfl.ch/news/ultra-light-gloves-let-users-touch-virtual-objects/

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How Humans and Machines Navigate Complex Situations

19.11.2018 | Science Education

Finding plastic litter from afar

19.11.2018 | Ecology, The Environment and Conservation

Channels for the Supply of Energy

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>