Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA Engineering researchers use electricity to generate alternative fuel

30.03.2012
Imagine being able to use electricity to power your car — even if it's not an electric vehicle. Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have for the first time demonstrated a method for converting carbon dioxide into liquid fuel isobutanol using electricity.

Today, electrical energy generated by various methods is still difficult to store efficiently. Chemical batteries, hydraulic pumping and water splitting suffer from low energy-density storage or incompatibility with current transportation infrastructure.

In a study published March 30 in the journal Science, James Liao, UCLA's Ralph M. Parsons Foundation Chair in Chemical Engineering, and his team report a method for storing electrical energy as chemical energy in higher alcohols, which can be used as liquid transportation fuels.

"The current way to store electricity is with lithium ion batteries, in which the density is low, but when you store it in liquid fuel, the density could actually be very high," Liao said. "In addition, we have the potential to use electricity as transportation fuel without needing to change current infrastructure."

Liao and his team genetically engineered a lithoautotrophic microorganism known as Ralstonia eutropha H16 to produce isobutanol and 3-methyl-1-butanol in an electro-bioreactor using carbon dioxide as the sole carbon source and electricity as the sole energy input.

Photosynthesis is the process of converting light energy to chemical energy and storing it in the bonds of sugar. There are two parts to photosynthesis — a light reaction and a dark reaction. The light reaction converts light energy to chemical energy and must take place in the light. The dark reaction, which converts CO2 to sugar, doesn't directly need light to occur.

"We've been able to separate the light reaction from the dark reaction and instead of using biological photosynthesis, we are using solar panels to convert the sunlight to electrical energy, then to a chemical intermediate, and using that to power carbon dioxide fixation to produce the fuel," Liao said. "This method could be more efficient than the biological system."

Liao explained that with biological systems, the plants used require large areas of agricultural land. However, because Liao's method does not require the light and dark reactions to take place together, solar panels, for example, can be built in the desert or on rooftops.

Theoretically, the hydrogen generated by solar electricity can drive CO2 conversion in lithoautotrophic microorganisms engineered to synthesize high-energy density liquid fuels. But the low solubility, low mass-transfer rate and the safety issues surrounding hydrogen limit the efficiency and scalability of such processes. Instead Liao's team found formic acid to be a favorable substitute and efficient energy carrier.

"Instead of using hydrogen, we use formic acid as the intermediary," Liao said. "We use electricity to generate formic acid and then use the formic acid to power the CO2 fixation in bacteria in the dark to produce isobutanol and higher alcohols."

The electrochemical formate production and the biological CO2 fixation and higher alcohol synthesis now open up the possibility of electricity-driven bioconversion of CO2 to a variety of chemicals. In addition, the transformation of formate into liquid fuel will also play an important role in the biomass refinery process, according to Liao.

"We've demonstrated the principle, and now we think we can scale up," he said. "That's our next step."

The study was funded by a grant from the U.S. Department of Energy's Advanced Research Projects Agency–Energy (ARPA–E).

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of more than 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cybersecurity. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to nine multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanoelectronics, nanomedicine, renewable energy, customized computing, and the smart grid, all funded by federal and private agencies.

Wileen Wong Kromhout | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Power and Electrical Engineering:

nachricht Meta-surface corrects for chromatic aberrations across all kinds of lenses
21.11.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Photovoltaic Systems adapted to their environment - project Infinity successfuly completed
21.11.2018 | CTR Carinthian Tech Research AG

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>