Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The “MeBot” robotic wheelchair can climb steps on its own

15.09.2016

Pittsburgh-based Human Engineering Research Lab (HERL) has developed the first ever robotic wheelchair – the MeBot – capable of climbing steps and mounting curbs on its own. The innovation came up against other systems at the first Cybathlon, which will take place at ETH Zürich in Kloten, Switzerland on October 8.

Steps and curbs currently pose a significant issue for wheelchair users. Even the most modern technologies are unable to surmount these obstacles automatically – instead, users have to ask for help, or need a ramp or have to build up momentum to climb up. As Rory Cooper, Director of the HERL points out, “The latter option is particularly dangerous for users, as they risk falling out of the wheelchair, injuring themselves or even being hit by a car”.


Fraunhofer IPA has integrated a radar unit in the MeBot, which accurately detects obstacles like stairs and triggers the automated mounting process.

Source: Fraunhofer IPA, Photo credit: Rainer Bez


With three wheel units, the robotic wheelchair known as “MeBot” makes it possible for the first time to climb steps and curbstones.

Source: HERL, Photo credit: Michael Lain

Six-wheeled wheelchairs can get over obstacles bit by bit

The HERL hopes that the MeBot will provide a solution to this issue. The world’s largest research laboratory with a focus on wheelchairs has developed a robotic system which can automatically climb steps and curbs. The base of the robot is a pedestal with six wheels, arranged in pairs. The central and largest wheel unit is for driving, while the forward and rear wheel units are for steering.

All three pairs of wheels can move horizontally and vertically, independently of each other. As soon as the robot detects an obstacle, the first pair of wheels extends, lifting the vehicle. The middle unit then rises independently which lifts the vehicle over the edge. The final pair of wheels then follows suit. Cooper explains that “This mechanism allows the system to mount obstacles, bit by bit – like a caterpillar”.

Radar module allows object recognition, whatever the weather

Expertise in signal recognition and processing is necessary for the MeBot to mount curbs and steps. This is where researchers at Fraunhofer IPA came into play. The team, led by Bernhard Kleiner, Group Manager for Motion Control Systems, has integrated a radar unit which detects objects with a high degree of accuracy and activates the automated process to mount the obstacle. For this to happen, the system emits beams, which measure the height of the step or curb.

This data allows the steering unit to know exactly how the wheelchair needs to be positioned in order to mount the obstacle. If the wheelchair is parallel with the object, the automated mounting process is launched and the step is mounted. Kleiner explains: “We chose a radar measuring unit because, unlike laser or infrared technologies, the system is resistant to environmental influences. Rain, the cold, fog or humidity should not pose a problem”. These features mean that radar systems can be used for many different industrial applications. For example, the IPA scientists have already developed a human detector for robots, as well as other industry 4.0 technologies.

Strengthening international research cooperation

At the Cybathlon, held at ETH Zürich, the MeBot will demonstrate that it is capable of far more than just climbing steps. The demanding course features six obstacles, including narrow doors, a slalom course and ramps. Although it will take several years before the innovation can be put into practice, Kleiner is sure that “HERL’s wheelchair competence combined with our expertise in signal processing means that MeBot is fully capable of maneuvering the chicanes. Our colleagues at the HERL have developed an initial prototype, which we now need to test and make faster”.

The MeBot is not the only innovation being developed jointly by Fraunhofer IPA and the HERL. The two institutes have collaborated in the field of military and civil rehabilitation for many years. Kleiner explains: “HERL experts are focused on wheelchair technologies, whereas we are responsible for drive technology and sensor concepts”. Together, the two partners have worked on a number of developments, including a pneumatically driven wheelchair.

Specialist contact persons:

Bernhard Kleiner (Fraunhofer IPA), Tel. +49 711 970-3718, bernhard.kleiner@ipa.fraunhofer.de

Rory A. Cooper (HERL), Tel. +49 412 822-3700, rcooper@pitt.edu

Weitere Informationen:

http://www.cybathlon.ethz.ch/
http://www.herl.pitt.edu/

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>