Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The largest electrical networks are not the best

13.05.2014

There is an optimum size for electrical networks if what is being considered is the risk of a blackout. This is the conclusion reached by a scientific study done by researchers at Universidad Carlos III in Madrid (UC3M); the study analyzes the dynamics of these complex infrastructures.

In 1928, the British biologist and geneticist John Haldane wrote the essay “On being the right size” in which he stated that “For every type of animal there is a most convenient size, and a large change in size inevitably carries with it a change of form”. The application of Haldane’s Principle spread to fields like physiology and paleontology, and there was speculation that it could be used with institutions and social organizations, as well. And that is precisely what these researchers have done with social infrastructures as complex as electrical networks. In light of Haldane’s comments, the scientists wondered if the expansion of these networks should continue or if, on the contrary, there is an optimum adequate size for their correct functioning. The answer is yes, according to the results of the power network model that these UC3M scientists, in collaboration with researchers at the University of Alaska Fairbanks and Iowa State University (both in the USA), used in the study, which was recently published in the journal Chaos.

To sum up: size matters if the risk of a blackout is being taken into account. “Risk is defined as the product of the probability of failure multiplied by the cost it generates,” explains researcher Benjamín Carreras, the 2014 Chair of Excellence in UC3M’s Physics Department. “When small networks join together, a lot of local black-outs are avoided, generally reducing costs; in contrast, huge black-outs occur in the large networks and, although they are very infrequent, they have an enormous cost, which limits the acceptable size for networks of this kind,” states Carreras, who makes this important point regarding the cost-benefit ratio, “The short-term benefits are mainly for the electrical companies, but it is not very clear who pays for the large black-outs, so there may not be a lot of interest in changing things.”

To reach these conclusions the researchers simulated the operation of an electrical network and statistically measured the risk of failures in the energy supply in function of the size of the infrastructures. To do this, they maintained a set of fixed conditions, such as reliability (the probability of the failure of a component), the network’s administration (how an increase in electrical demand is managed) and the environmental conditions (the influence of earthquakes, storms, etc.).

... more about:
»Risk »conditions »failure »models »networks »ratio »size »storms

Reliability, operations and environment

The two first factors are the most important, according to the researchers, although the third is steadily growing in importance. “In a recent study it was shown that, in recent decades, there has been a systematic increase in failures in the grid due to weather conditions, probably because of climate change. We are talking about an 80% increase since 2003,” points out Carreras. Nevertheless, everything depends on one’s point of view; really, localized blackouts caused by storms are not necessarily bad, according to the researcher, because when they are repaired it is possible to make the systems more resistant to general blackouts.

During this study, the researchers took parameters from the electrical grid in the United States, but their models and results can be extrapolated to any type of electrical network. In fact, there are important parallelisms with other types of infrastructures, and even with economic systems: “In these systems, “blackouts” are known as “crises” and their size has increased with globalization, so it would be very interesting to apply these ideas to economic models,” they note. Their conclusions lead to questioning the idea of “the bigger, the better”. At least when it comes to electrical grids.

Further information:

Does size matter? B. A. Carreras. D. E. Newman. Ian Dobson. Chaos: An Interdisciplinary Journal of Nonlinear Science 24, 023104. Published online on April 8, 2014. doi: 10.1063/1.4868393 http://dx.doi.org/10.1063/1.4868393

Javier Alonso | Eurek Alert!
Further information:
http://portal.uc3m.es/portal/page/portal/actualidad_cientifica/noticias/largest_electrical_networks

Further reports about: Risk conditions failure models networks ratio size storms

More articles from Power and Electrical Engineering:

nachricht Metalens grows up
04.12.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Diamonds in your devices: Powering the next generation of energy storage
04.12.2019 | Tokyo University of Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Dramatic transition in Streptomyces life cycle explained in new discovery

04.12.2019 | Life Sciences

Early immune response may improve cancer immunotherapies

04.12.2019 | Health and Medicine

Neurodegenerative diseases may be caused by transportation failures inside neurons

04.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>