Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The interface makes the difference

12.04.2019

ICIQ researchers and collaborators look in detail at the interfaces in perovskite solar cells to understand the differences observed in their performance

A collaboration led by ICIQ's Palomares group deepens the understanding of the impact that changing the materials in a perovskite solar cell has on its performance. The results, published in the peer-reviewed journal Energy & Environmental Science, will help rationalize the design of the components of cells, thus increasing their commercial appeal.


Perovskite solar cells with different materials as HTMs also present different colors.

Credit: ICIQ

Perovskite-based solar cells are the fastest-advancing solar technology to date. Since they were first used in 2009, perovskite solar cells have achieved high efficiencies (over 22% under standard solar irradiation) at low production costs.

Although most of the perovskite components are optimized, there's still room for improvement. Especially in reference to the Hole Transport Materials (HTMs) employed.

Perovskite solar cells with different materials as HTMs also present different colours. Credit: ICIQ

The collaboration, among researchers from ICIQ's Palomares and Vidal groups, the Physical Chemistry of Surfaces and Interfaces group at the Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and IMDEA Nanocienca, sheds light on the reasons behind the differences observed in perovskite solar cells' performance by comparing four different HTMs that present close chemical and physical properties.

Little changes can be powerful

Perovskite-based solar cells are approaching the stability - under working conditions - necessary to be trusted as potential commercial products. The major concern is the materials used, particularly spiro-OMeTAD - the most widely used HTM, which is prone to degradation. Therefore, current research is focused on finding alternatives. "Scientists have been designing new molecules that could replace spiro-OMeTAD for years.

Looking for molecules with similar electrical and optic characteristics than spiro-OMeTAD and hoping to get similar results. But when testing new HTMs, instead of getting similar results, the cells worked very badly. So, we decided to understand why this happened," explains Núria F. Montcada, a postdoctoral researcher at the Palomares group and one of the first authors of the paper.

The researchers realized that new molecules with the potential to replace spiro-OMeTAD as HTM were selected on the basis to their properties in solution. However, in functional solar cells, these molecules are prepared in the form of thin films whose surfaces, in turn, are placed in contact with other materials, forming interfaces. The created interfaces may confer changes in the properties of the molecules.

Through the collaboration with ICMAB scientists, the surface work function of each HTM layer on perovskites solar cells was measured to find that "Spiro-OMeTAD energy levels align perfectly with respect to the other components of the cell, while the energetic landscape is less favorable for layers of the new HTM molecules tested.

Surfaces and interfaces created in the solar cell stack have a crucial role in the functional device performances," says Carmen Ocal, researcher at ICMAB.

"We have to be aware that the perovskite-HTM interface may shift the energy levels and produce undesired energy misalignments. We've come to demonstrate that the study of molecules needs to match the conditions under which the molecule is going to be used - otherwise molecule design is just trial and error," concludes Montcada.

Media Contact

Berta Carreño
bcarreno@iciq.es
34-650-020-340

 @ICIQchem

http://www.iciq.es/ 

Berta Carreño | EurekAlert!
Further information:
http://www.iciq.org/the-interface-makes-the-difference/
http://dx.doi.org/10.1039/C9EE00528E

More articles from Power and Electrical Engineering:

nachricht SLAC develops novel compact antenna for communicating where radios fail
12.04.2019 | DOE/SLAC National Accelerator Laboratory

nachricht Agrophotovoltaics: High Harvesting Yield in Hot Summer of 2018
12.04.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

Im Focus: Newly discovered mechanism of plant hormone auxin acts the opposite way

Auxin accumulation at the inner bend of seedling leads to growth inhibition rather than stimulation as in other plant tissues.

Increased levels of the hormone auxin usually promote cell growth in various plant tissues. Chinese scientists together with researchers from the Institute of...

Im Focus: Creating blood vessels on demand

Researchers discover new cell population that can help in regenerative processes

When organs or tissues are damaged, new blood vessels must form as they play a vital role in bringing nutrients and eliminating waste. This is the only way for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

European Geosciences Union meeting: ExoMars press conference, live streams, on-site registration

02.04.2019 | Event News

Networks make it easier

02.04.2019 | Event News

 
Latest News

Largest, fastest array of microscopic 'traffic cops' for optical communications

12.04.2019 | Information Technology

Protein complex may help prevent neurodegenerative diseases

12.04.2019 | Life Sciences

Plant immune system detects bacteria through small fatty acid molecules How plants defend themselves

12.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>