Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The interface makes the difference

12.04.2019

ICIQ researchers and collaborators look in detail at the interfaces in perovskite solar cells to understand the differences observed in their performance

A collaboration led by ICIQ's Palomares group deepens the understanding of the impact that changing the materials in a perovskite solar cell has on its performance. The results, published in the peer-reviewed journal Energy & Environmental Science, will help rationalize the design of the components of cells, thus increasing their commercial appeal.


Perovskite solar cells with different materials as HTMs also present different colors.

Credit: ICIQ

Perovskite-based solar cells are the fastest-advancing solar technology to date. Since they were first used in 2009, perovskite solar cells have achieved high efficiencies (over 22% under standard solar irradiation) at low production costs.

Although most of the perovskite components are optimized, there's still room for improvement. Especially in reference to the Hole Transport Materials (HTMs) employed.

Perovskite solar cells with different materials as HTMs also present different colours. Credit: ICIQ

The collaboration, among researchers from ICIQ's Palomares and Vidal groups, the Physical Chemistry of Surfaces and Interfaces group at the Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and IMDEA Nanocienca, sheds light on the reasons behind the differences observed in perovskite solar cells' performance by comparing four different HTMs that present close chemical and physical properties.

Little changes can be powerful

Perovskite-based solar cells are approaching the stability - under working conditions - necessary to be trusted as potential commercial products. The major concern is the materials used, particularly spiro-OMeTAD - the most widely used HTM, which is prone to degradation. Therefore, current research is focused on finding alternatives. "Scientists have been designing new molecules that could replace spiro-OMeTAD for years.

Looking for molecules with similar electrical and optic characteristics than spiro-OMeTAD and hoping to get similar results. But when testing new HTMs, instead of getting similar results, the cells worked very badly. So, we decided to understand why this happened," explains Núria F. Montcada, a postdoctoral researcher at the Palomares group and one of the first authors of the paper.

The researchers realized that new molecules with the potential to replace spiro-OMeTAD as HTM were selected on the basis to their properties in solution. However, in functional solar cells, these molecules are prepared in the form of thin films whose surfaces, in turn, are placed in contact with other materials, forming interfaces. The created interfaces may confer changes in the properties of the molecules.

Through the collaboration with ICMAB scientists, the surface work function of each HTM layer on perovskites solar cells was measured to find that "Spiro-OMeTAD energy levels align perfectly with respect to the other components of the cell, while the energetic landscape is less favorable for layers of the new HTM molecules tested.

Surfaces and interfaces created in the solar cell stack have a crucial role in the functional device performances," says Carmen Ocal, researcher at ICMAB.

"We have to be aware that the perovskite-HTM interface may shift the energy levels and produce undesired energy misalignments. We've come to demonstrate that the study of molecules needs to match the conditions under which the molecule is going to be used - otherwise molecule design is just trial and error," concludes Montcada.

Media Contact

Berta Carreño
bcarreno@iciq.es
34-650-020-340

 @ICIQchem

http://www.iciq.es/ 

Berta Carreño | EurekAlert!
Further information:
http://www.iciq.org/the-interface-makes-the-difference/
http://dx.doi.org/10.1039/C9EE00528E

More articles from Power and Electrical Engineering:

nachricht More reliable operation offshore wind farms
23.08.2019 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Scientists develop a metamaterial for applications in magnonics
22.08.2019 | Moscow Institute of Physics and Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>