Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teach Your Robot Well

09.03.2012
Within a decade, personal robots could become as common in U.S. homes as any other major appliance, and many if not most of these machines will be able to perform innumerable tasks not explicitly imagined by their manufacturers.

This opens up a wider world of personal robotics, in which machines are doing anything their owners can program them to do—without actually being programmers.

Laying some helpful groundwork for this world is, a new study by researchers in Georgia Tech’s Center for Robotics & Intelligent Machines (RIM), who have identified the types of questions a robot can ask during a learning interaction that are most likely to characterize a smooth and productive human-robot relationship.

These questions are about certain features of tasks, more so than labels of task components or real-time demonstrations of the task itself, and the researchers identified them not by studying robots, but by studying the everyday (read: non-programmer) people who one day will be their masters. The findings were detailed in the paper, “Designing Robot Learners that Ask Good Questions,” presented this week in Boston at the 7th ACM/IEEE Conference on Human-Robot Interaction (HRI).

“People are not so good at teaching robots because they don’t understand the robots’ learning mechanism,” said lead author Maya Cakmak, Ph.D. student in the School of Interactive Computing. “It’s like when you try to train a dog, and it’s difficult because dogs do not learn like humans do. We wanted to find out the best kinds of questions a robot could ask to make the human-robot relationship as ‘human’ as it can be.”

Cakmak’s study attempted to discover the role “active learning” concepts play in human-robot interaction. In a nutshell, active learning refers to giving machine learners more control over the information they receive. Simon, a humanoid robot created in the lab of Andrea Thomaz (assistant professor in the Georgia Tech’s School of Interactive Computing, and co-author), is well acquainted with active learning; Thomaz and Cakmak are programming him to learn new tasks by asking questions.

Cakmak designed two separate experiments (see video): first, she asked human volunteers to assume the role of an inquisitive robot attempting to learn a simple task by asking questions of a human instructor. Having identified the three main question types (feature, label and demonstration), Cakmak tagged each of the participants’ questions as one of the three. The overwhelming majority (about 82 percent) of questions were feature queries, showing a clear cognitive preference in human learning for this query type.

Type of question Example

Label query “Can I pour salt like this?"

Demonstration query “Can you show me how to pour salt from here?”

Feature query “Can I pour salt from any height?”

Next, Cakmak recruited humans to teach Simon new tasks by answering the robot’s questions and then rating those questions on how “smart” they thought they were. Feature queries once again were the preferred interrogatory, with 72 percent of participants calling them the smartest questions.

“These findings are important because they help give us the ability to teach robots the kinds of questions that humans would ask,” Cakmak said. “This in turn will help manufacturers produce the kinds of robots that are most likely to integrate quickly into a household or other environment and better serve the needs we’ll have for them.”

Georgia Tech is fielding five of the 38 papers accepted for HRI’s technical program, making it the largest academic contributor to the conference. Those five include:

“Designing Robot Learners that Ask Good Questions,” by Maya Cakmak and Andrea L. Thomaz

“Real World Haptic Exploration for Telepresence of the Visually Impaired,” by Chung Hyuk Park and Ayanna M. Howard

“The Domesticated Robot: Design Guidelines for Assisting Older Adults to Age in Place,” by Jenay Beer, Cory-Ann Smarr, Tiffany Chen, Akanksha Prakash, Tracy Mitzner, Charles Kemp and Wendy Rogers

“Enhancing Interaction Through Exaggerated Motion Synthesis,” by Michael Gielniak and Andrea Thomaz

“Trajectories and Keyframes for Kinesthetic Teaching: A Human-Robot Interaction Perspective,” by Baris Akgun, Maya Cakmak, Jae Wook Yoo and Andrea L. Thomaz

All five papers describe research geared toward the realization of in-home robots assisting humans with everyday activities. Ph.D. student Baris Akgun’s paper, for example, assumes the same real-life application scenario as Cakmak’s—a robot learning new tasks from a non-programmer—and examines whether robots learn more quickly from continuous, real-time demonstrations of a physical task, or from isolated key frames in the motion sequence. The research is nominated for Best Paper at HRI 2012.

“Georgia Tech is certainly a leader in the field of human-robot interaction; we have more than 10 faculty across campus for whom HRI is a primary research area,” Thomaz said. “Additionally, the realization of ‘personal robots’ is a shared vision of the whole robotics faculty—and a mission of the RIM research center.”

Contacts
Michael Terrazas
Assistant Director of Communications
College of Computing at Georgia Tech
mterraza@cc.gatech.edu
404-245-0707

Michael Terrazas | EurekAlert!
Further information:
http://www.cc.gatech.edu
http://www.cc.gatech.edu/news/teach-your-robot-well-georgia-tech-shows-how

More articles from Power and Electrical Engineering:

nachricht Scientists print sensors on gummi candy: creating microelectrode arrays on soft materials
21.06.2018 | Technische Universität München

nachricht Electron sandwich doubles thermoelectric performance
20.06.2018 | Hokkaido University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>