Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system proposed to optimise combined energy use

14.11.2008
Engineers from the University of Zaragoza have developed an algorithm that can optimise hybrid electricity generation systems through combined use of renewable energies, such as photovoltaic and wind power, and non-renewables, such as diesel. Their study, published online in the magazine Renewable Energy, envisions storing the energy in batteries or hydrogen tanks.

“The objective of this project is to minimise both the costs and polluting emissions generated by energy production within isolated systems in the electric network, as well as reducing the amounts of unprovided energy (energy required by appliances and devices, but which cannot be supplied)” Rodolfo Dufo, one of the authors of the study and a researcher at the Higher Polytechnic Centre of the University of Zaragoza, told SINC.

The engineers looked at isolated installations, which are provided with electric energy from photovoltaic solar panels, aerogenerators – sometimes known as windmills – and diesel generators, which use electrochemical (normally lead acid) batteries or hydrogen (by means of electrolysers, hydrogen tanks and fuel batteries) for storage. They have also looked into the possibility of redirecting the hydrogen for external uses, such as powering a vehicle, for example. “The optimisation of all these systems is a very complex process, and classic optimisation techniques are not usually appropriate in these cases due to the high computational costs they incur,” said Dufo.

The study, published in the magazine Renewable Energy, is the first time a mathematical algorithm known as SPEA (Strength Pareto Evolutionary Algorithm) has been used for the optimal “multi-objective” designing of hybrid electric energy generation systems.

The algorithm provides an optimum range of solutions (known as ‘pareto’), from which the designer can choose the most appropriate according to the relevant budgetary conditions, acceptable levels of pollutant emissions, and the amount of unprovided energy involved. Optimisation using SPEA allows a range of possible solutions to be obtained “within a reasonably short timescale”.

This method has been used to start testing a new design of isolated energy system using exclusively renewable sources (photovoltaic, wind, hydrogen and batteries), based at the Foundation for the Development of New Hydrogen Technologies’ facilities in the Walqa Technology Park in Huesca, Aragon. The device is already operational, but the researchers are currently working on data collection in order to be able to obtain results to ensure the system’s optimal configuration.

“Given the current energy crisis and the threat of climate change, isolated electrical network systems such as this are going to become ever more important, since they can simultaneously optimise costs, pollutant emissions and unprovided energy”, said the engineer.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>