Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Synthetic Biology Technique Boosts Microbial Production of Diesel Fuel

27.03.2012
Joint BioEnergy Institute Researchers Develop Dynamic System for Regulating Metabolic Pathways

Significant boosts in the microbial production of clean, green and renewable biodiesel fuel has been achieved with the development of a new technique in synthetic biology by researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI).

This new technique – dubbed a dynamic sensor-regulator system (DSRS) – can detect metabolic changes in microbes during the production of fatty acid-based fuels or chemicals and control the expression of genes affecting that production. The result in one demonstration was a threefold increase in the microbial production of biodiesel from glucose.

“The DSRS is an amazing and powerful new tool, the first example of a synthetic system that can dynamically regulate a metabolic pathway for improving production of fatty acid-based fuels and chemicals while the microbes are in the bioreactor,” says Jay Keasling, CEO of JBEI and one of the world’s foremost practitioners of synthetic biology, who led this research.

Keasling, who also serves as the Associate Laboratory Director for Biosciences at Lawrence Berkeley National Laboratory (Berkeley Lab) is the corresponding author of a paper describing this research in Nature Biotechnology. The paper is titled “Design of a dynamic sensor-regulator system for production of FAbased chemicals and fuels.” Co-authors are Fuzhong Zhang and James Carothers of JBEI’s Fuels Synthesis Division, which is directed by Keasling.

The need for new transportation fuels that are renewable and can be produced in a sustainable fashion has never been more urgent. Scientific studies have consistently shown that liquid fuels derived from plant biomass are one of the best alternatives if a cost-effective means of commercial production can be found. Major research efforts to this end are focused on fatty acids – the energy-rich molecules in plant cells that have been dubbed nature’s petroleum. Fatty acids now serve as the raw materials not only for biodiesel fuel, but also for a wide range of important chemical products including surfactants, solvents and lubricants.

Jay Keasling and Fuzhong Zhang at the Joint BioEnergy Institute (JBEI) obtained a threefold increase in the microbial production of biodiesel from glucose using a dynamic sensor-regulator system they and JBEI’s James Carothers developed. (Photo by Roy Kaltschmidt, Berkeley Lab)

“Microbial production of fuels and chemicals from fatty acids is a greener and sustainable alternative to chemical synthesis,” says Zhang, who is the lead author of the Nature Biology paper. “However, high productivities, titers and yields are essential for microbial production of these chemical products to be economically viable, particularly in the cases of biofuels and low-value bulk chemicals.”

Hampering microbial production of fatty acid-based chemicals has been metabolic imbalances during product synthesis.

“Expression of pathway genes at too low a level creates bottlenecks in biosynthetic pathways, whereas expression at too high a level diverts cellular resources to the production of unnecessary enzymes or intermediate metabolites that might otherwise be devoted to the desired chemical,” Zhang says. “Furthermore, the accumulation of these enzymes and intermediate metabolites can have a toxic effect on the microbes, reducing yield and productivity.”

Using the tools of synthetic biology, there have been several strategies developed to meet this challenge but these previous strategies only provide static control of gene expression levels.

“When a gene expression control system is tuned for a particular condition in the bioreactor and the conditions change, the control system will not be able to respond and product synthesis will suffer as a result,” Zhang says.

The DSRS responds to the metabolic status of the microbe in the bioreactor during synthesis by sensing key intermediate metabolites in an engineered pathway. The DSRS then regulates the genes that control the production and consumption of these intermediates to allow their delivery at levels and rates that optimize the pathway for maximum productivity as conditions change in the bioreactor.

“Nature has evolved sensors that can be used to sense the biosynthetic intermediate, but naturally-occurring regulators will rarely suffice to regulate an engineered pathway because these regulators were evolved to support host survival, rather than making chemicals in large quantity,” Zhang says.

To create their DSRS, Zhang, Keasling and Carothers focused on a strain of Escherichia coli (E. coli) bacteria engineered at JBEI to produce diesel fuel directly from glucose. E. coli is a well-studied microorganism whose natural ability to synthesize fatty acids and exceptional amenability to genetic manipulation make it an ideal target for biofuels research. In this latest work, the JBEI researchers first developed biosensors for a key intermediate metabolite – fatty acyl-CoA – in the diesel biosynthetic pathway. They then developed a set of promoters (segments of DNA) that boost the expression of specific genes in response to cellular acyl-CoA levels. These synthetic promoters only become fully activated when both fatty acids and the inducer reagent known as “IPTG” are present.

“For a tightly regulated metabolic pathway to maximize product yields, it is essential that leaky gene expressions from promoters be eliminated,” Zhang says. “Since our hybrid promoters are repressed until induced by IPTG, and the induction levels can be tuned automatically by the FA/acyl-CoA level, they can be readily used to regulate production of biodiesel and other fatty acid-based chemicals.”

Introducing the DSRS into the biodiesel-producing strain of E.coli improved the stability of this strain and tripled the yield of fuel, reaching 28-percent of the theoretical maximum. With further refinements of the technique, yields should go even higher. The DSRS should also be applicable to the microbial production of other chemical products, both fatty acid-based and beyond.

“Given the large number of natural sensors available, our DSRS strategy can be extended to many other biosynthetic pathways to balance metabolism, increase product titers and yields, and stabilize production hosts,” Zhang says. “It should one day be possible to dynamically regulate any metabolic pathway, regardless of whether a natural sensor is available or not, to make microbial production of commodity chemicals and fuels competitive on a commercial scale.”

This research was supported in part by the DOE Office of Science, and in part by the National Science Foundation through the Synthetic Biology Engineering Research Center (SynBERC).

JBEI is one of three Bioenergy Research Centers established by the DOE’s Office of Science in 2007. It is a scientific partnership led by Berkeley Lab and includes the Sandia National Laboratories, the University of California campuses of Berkeley and Davis, the Carnegie Institution for Science, and the Lawrence Livermore National Laboratory. DOE’s Bioenergy Research Centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the Unites States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov.

Additional Information

For more about the Joint BioEnergy Institute (JBEI), visit the Website at www.jbei.org

For more about SynBERC, visit the Website at http://www.synberc.org/

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Record efficiency for printed solar cells
09.07.2020 | Swansea University

nachricht Bespoke catalysts for power-to-X
09.07.2020 | Karlsruher Institut für Technologie (KIT)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Porous graphene ribbons doped with nitrogen for electronics and quantum computing

09.07.2020 | Physics and Astronomy

Record efficiency for printed solar cells

09.07.2020 | Power and Electrical Engineering

Rock 'n' control

09.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>