Super environmentally friendly: the “fool’s gold battery”

The key to success: pyrite (fool’s gold) as a cathode material JJ Harrison/commons.wikimedia.org

There is an urgent need to search for low-priced batteries to store electricity. Intermittency of green electricity is affecting the power grids, calling for stationary storage units to be connected into a smart grid., Electric cars are of increasing popularity, but are still to explensive.

Efficient lithium ion batteries we know are not suitable for large-scale stationary storage of electricity; they are just too expensive precious lithium is too scarce. A cheap alternative is called for – a battery made of inexpensive ingredients that are available in abundance. But electrochemistry is a tricky business: Not everything that’s cheap can be used to make a battery.

Safe, durable and affordable

Maksym Kovalenko, Marc Walter and their colleagues at Empa’s Laboratory for Thin Films and Photovoltaics have now managed to pull off the unthinkable: by combining a magnesium anode with an electrolyte made of magnesium and sodium ions. Nanocrystals made of pyrite – more commonly known as fool’s gold – serve as the cathode. Pyrite is crystalline iron sulfide. The sodium ions from the electrolyte migrate to the cathode during discharging.

When the battery is recharged, the pyrite re-releases the sodium ions. This so-called sodium-magnesium hybrid battery already works in the lab and has several advantages: The magnesium as the anode is far safer than highly flammable lithium. And the test battery in the lab already withstood 40 charging and discharging cycles without compromising its performance, calling for further optimization.

The biggest advantage, however, is the fact that all the ingredients for this kind of battery are easily affordable and in plentiful supply: Iron sulfide nanocrystals, for instance, can be produced by grinding dry metallic iron with sulfur in conventional ball-mills. Iron, magnesium, sodium, and sulfur are amongst hold 4th, 6th, 7th and 15th place by the abundance in the Earth’s crust(by mass).

One kilogram of magnesium costs at most four Swiss francs, which makes it 15 times cheaper than lithium. There are also savings to be made when it comes to constructing the cheap batteries: Lithium ion batteries require relatively expensive copper foil to collect and conduct away the electricity. For the fool’s gold battery, however, inexpensive aluminum foil is perfectly sufficient.

Potential for storing the electricity produced annually at Leibstadt power station

The researchers primarily see potential in their development for large network storage batteries. The fool’s gold battery is not suitable for electric cars – its output is too low. But wherever it boils down to costs, safety and environmental friendliness, the technology is a plus. In their paper recently published in the journal Chemistry of Materials, the Empa researchers propose batteries with terawatts of storage capacity.

Such a battery might be used to temporarily store the annual production from the Swiss nuclear power station in Leibstadt, for instance. “The battery’s full potential has not been exhausted yet,” says Kovalenko, who teaches as a professor at ETH Zurich’s Department of Chemistry and Applied Biosciences alongside his research at Empa.

“If we refine the electrolytes, we’re bound to be able to increase the electric voltage of the sodium-magnesium hybrid cell even further and to extend its cycling life.” He adds: “We also look for investors willing to support research into such post-Li-ion technologies and bring them to the market”.

http://www.empa.ch/plugin/template/empa/3/162509/—/l=2
http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b03531

Media Contact

Rainer Klose EMPA

More Information:

http://www.empa.ch

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors