New Study Explores Using Oceans and Lakes as Renewable Energy Resources

“Bodies of water are a huge, untapped source of energy. They contain highly concentrated and highly dense forms of energy, which provide roughly the same amount of energy as thousands of solar panels and wind turbines,” said Alan Fung, a professor of mechanical and industrial engineering, and lead author of the paper, Review of Marine Renewable Energies: Case Study of Iran. The study analyzed the seas and lakes in Iran and surrounding areas to assess the potential of different types of marine energy.

As a renewable resource marine energy, unlike wind and solar energy, can be obtained at any time and can be stored free of charge. Bodies of water offer predictable amounts of energy, and in some cases, require smaller infrastructure (and less capital investment) to extract energy than other renewable sources of power. Harnessing marine energy is also more environmentally sustainable as conventional fossil fuel-fired electricity generation can cause pollution and lead to global warming.

While the technology to support certain types of marine energy is not yet commercially available, the researchers say their study shows that further investment is needed in order to make full use of this rich, renewable resource.

“You need to have a vision for the future,” said co-author Farshid Zabihian. “We shouldn’t wait until the technology is perfect to use marine energy. We can start right now by introducing it in smaller communities and through pilot projects.”

The data used in the study was provided by Zabihian, who studied power generation in Iran before moving to Canada to pursue a PhD in mechanical engineering at Ryerson. A former student of Fung, Zabihian graduated from Ryerson in June and will soon join the faculty of the West Virginia University Institute of Technology.

Using Zabihian’s data, the researchers examined the viability of five distinct types of marine energy. It was discovered that each one was specifically suited for Iran’s various bodies of water and could also be used in particular regions elsewhere in the world.

For example, wave energy, which is produced by the wind’s effect on water, does not require large areas of land in order to capture the energy from incoming waves. For that reason, this type of energy would be most effective on remote islands that are not connected to the power grid and where electricity is quite expensive. According to the World Energy Council, worldwide wave energy could potentially provide up to 12 per cent of current global electricity demand.

Tidal energy is created by the gravitational forces of the moon and the sun on the waters and rotation of the Earth. It is a highly predictable source of energy. Tidal energy takes the form of potential energy (the difference in water levels between ebb and flow) or kinetic energy (from the tidal current). As such, it could be used to replace or support conventional types of power generation.

Other types of energy examined by Fung and Zabihian include: ocean thermal energy, which relies upon the temperature difference between warm, shallow water and cold, deep water; ocean current energy, which requires the installation of underwater turbines to collect energy generated by wind and temperature differences in oceans due to solar heating; and salinity gradient energy, which produces energy from the osmotic pressure difference ( the amount of pressure needed to prevent a solution from flowing through a membrane) between fresh and salty water.

Review of Marine Renewable Energies: Case Study of Iran was published in the June 2011 issue of the journal Renewable and Sustainable Energy Reviews.

Ryerson University is Canada's leader in innovative, career-oriented education and a university clearly on the move. With a mission to serve societal need, and a long-standing commitment to engaging its community, Ryerson offers more than 100 undergraduate and graduate programs. Distinctly urban, culturally diverse and inclusive, the university is home to 28,000 students, including 2,000 master's and PhD students, nearly 2,700 faculty and staff, and more than 130,000 alumni worldwide. Research at Ryerson is on a trajectory of success and growth: externally funded research has doubled in the past four years. The G. Raymond Chang School of Continuing Education is Canada's leading provider of university-based adult education. For more information, visit www.ryerson.ca

Media Contact

Johanna VanderMaas Newswise Science News

More Information:

http://www.ryerson.ca

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors