Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Make Biodiesel from Waste Vegetable Oil

27.05.2009
A group of Virginia Tech students have produced more than 200 gallons of biodiesel as part of a senior design project. They are using it in two pickup trucks.

A group of Virginia Tech students have produced more than 200 gallons of biodiesel as part of a senior design project for the department of mechanical engineering. The Virginia Tech Bio-Fuels group is putting the fuel to direct use, running two pickup trucks on the liquid in a bid to not only stave off the use of foreign-bought oil but also to be environmentally friendly.

The B100 biodiesel is made from waste vegetable oil (WVO) obtained from local restaurants and processed in a nondescript warehouse along Virginia Tech's Plantation Road, surrounded by fields dedicated to farm animals. The 200 gallons were made during the past two months, mainly by processing equipment donated to the student team.

The project is overseen by Foster Agblevor, associate professor of biological systems engineering for the College of Engineering and the College of Life Sciences and Agriculture. Agblevor already has made headlines with experimental alternative fuels such as converting poultry litter into bio-oil.

The project began in 2008 when the now senior team consisted of juniors. The first year consisted of planning, research, and obtaining the funding and needed equipment for the project. This year consisted of more research, design, construction of process equipment, and converting the WVO into biodiesel for consistent use. The group produces B100, or 100 biodiesel.

"In the summer, the viscosity of the 100 percent biodiesel is low enough to use," said Christopher Block, who received his bachelor's degree in mechanical engineering in spring 2009 from Lake Forest, Ill. During winter months, certain biodiesels derived from animal fat have been known to gel or freeze in the tank. Therefore, the fuel must be mixed with regular petroleum to operate properly. "We learned via emissions testing that the B20 and B50 blends produce more favorable emissions than the B100 fuel," Block said, referring to mixes that use 80 percent petroleum and 20 percent biodiesel, and an even split, respectively.

The group limited its project to 200 gallons of biodiesel because of space limitations at the warehouse, but could produce more if needed. For now, the team can make up to 50 gallons at a time, so the potential for fueling a small fleet is possible. Already there are some takers.

"We are building a new team for next year who will take it to the next level," Agblevor said. "Giles County Wheatland Eco-Park would like them to install the unit on their property for education and other purposes." An unnamed company is interested in commercializing the project, and that the university's cafeterias could provide the waste grease product. "I will be encouraging [biological systems engineering] department to start using our biodiesel on some of the equipment that runs on diesel fuel," he added.

Block will remain on campus next year as he pursues a master's degree in mechanical engineering. He hopes to continue with the biodiesel project, but a permanent home for the operation must be found. The team had hopes to acquire a trailer so they could take the equipment around the state, including the Virginia State Fair, for tours. However, the idea proved too expensive.

The student team, in addition to Block, includes

* Christopher Chelko of Huntersville, N.C., mechanical engineering;

* Matteo del Ninno of Alexandria, Va., mechanical engineering;

* Brian Eggleston of Blacksburg, Va., mechanical engineering;

* Blake Gordon of Bluefield, W.Va., mechanical engineering;

* Meredith Herrmann of Manasquan, N.J., industrial systems engineering; and

* Andrew Yard of Frenchtown, N.J., mechanical engineering.

The process of making the oil is straight forward.

1. The collected oil is pre-filtered using a centrifuge unit to remove sediments and food debris. Oil that hasn’t been used long is best. The filtering process continues as the oil is pre-heated in a tank, and then put through filter bags.

2. The level of the oil’s acidity is then determined. This determines how much methoxide, a combination of potassium hydroxide and methanol, to add to the oil. The vegetable oil is kept at roughly 140 degrees Fahrenheit during this process.

3. The mixture is agitated for roughly 8 hours at the same temperature. During the reaction stage, the catalyst -- caustic potash or Potassium Hydroxide -- attacks the oil and begins breaking the molecules apart into glycerol and fatty acid chains. Just after the molecules are broken apart, the methanol begins to react with the fatty acid chains. Glycerin, a side product, is produced when the glycerol molecules separated from the reaction mixture.

4. The solution is then moved into settling tanks, where the glycerin settles to the bottom of the tank while the freshly made biodiesel remains at the top. The glycerin is drained out, and used for several purposes including composting or with animal feed.

5. The biodiesel now must be washed with water that is sprayed into the tanks containing the unwashed fuel. As the water falls, excess methanol and soap molecules dissolve in the water and settles in the bottom layer, thereby cleansing the biodiesel.

6. The soapy waste water is now drained off the oil, leaving behind “wet” liquid biodiesel. To “dry” the fuel of water, the biodiesel is heated for several hours to evaporate the water.

7. The finished biodiesel is then pumped through a final filter into a diesel vehicle’s fuel tank.

Steven Mackay | Newswise Science News
Further information:
http://www.vtbiofuels.com
http://www.vt.edu

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>