Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Static electricity could charge our electronics

28.01.2019

While common in everyday life, the science behind this phenomenon is not well understood

Unhappy with the life of your smartphone battery?


These images show how the surfaces of magnesia (top block) and barium titanate (bottom block) respond when they come into contact. The resulting lattice deformations in each object contributes to the driving force behind the electric charge transfer during friction.

Credit: James Chen, University at Buffalo

Thought so.

Help could be on the way from one of the most common, yet poorly understand, forms of power generation: static electricity.

"Nearly everyone has zapped their finger on a doorknob or seen child's hair stick to a balloon. To incorporate this energy into our electronics, we must better understand the driving forces behind it," says James Chen, PhD, assistant professor in the Department of Mechanical and Aerospace Engineering in the School of Engineering and Applied Sciences at the University at Buffalo.

Chen is a co-author of a study in the December issue of the Journal of Electrostatics that suggests the cause of this hair-raising phenomenon is tiny structural changes that occur at the surface of materials when they come into contact with each other.

The finding could ultimately help technology companies create more sustainable and longer-lasting power sources for small electronic devices.

Supported by a $400,000 National Science Foundation grant, Chen and Zayd Leseman, PhD, associate professor of mechanical and nuclear engineering at Kansas State University, are conducting research on the triboelectric effect, a phenomenon wherein one material becomes electrically charged after it contacts a different material through friction.

The triboelectric effect has been known since ancient times, but the tools for understanding and applying it have only become available recently due to the advent of nanotechnology.

"The idea our study presents directly answers this ancient mystery, and it has the potential to unify the existing theory. The numerical results are consistent with the published experimental observations," says Chen.

The research Chen and Leseman conduct is a mix of disciplines, including contact mechanics, solid mechanics, materials science, electrical engineering and manufacturing. With computer models and physical experiments, they are engineering triboelectric nanogenerators (TENGs), which are capable of controlling and harvesting static electricity.

"The friction between your fingers and your smartphone screen. The friction between your wrist and smartwatch. Even the friction between your shoe and the ground. These are great potential sources of energy that we can to tap into," Chen says. "Ultimately, this research can increase our economic security and help society by reducing our need for conventional sources of power."

As part of the grant, Chen has worked with UB undergraduate students, as well as high school students at the Health Sciences Charter School in Buffalo, to promote science, technology, engineering and math (STEM) education.

###

This study was made available online in September 2018 ahead of final publication in December 2018.

Funding for the award runs until 2020, and Chen says more findings will be presented at the American Physical Society's meeting in March in Boston, Massachusetts.

Media Contact

Cory Nealon
cmnealon@buffalo.edu
716-645-4614

 @UBNewsSource

http://www.buffalo.edu 

Cory Nealon | EurekAlert!
Further information:
http://www.buffalo.edu/news/releases/2019/01/024.html
http://dx.doi.org/10.1016/j.elstat.2018.09.001

More articles from Power and Electrical Engineering:

nachricht High-speed surveillance in solar cells catches recombination red-handed
14.02.2019 | Osaka University

nachricht Sodium is the new lithium: Researchers find a way to boost sodium-ion battery performance
04.02.2019 | Nagoya Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>