Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Static electricity could charge our electronics

28.01.2019

While common in everyday life, the science behind this phenomenon is not well understood

Unhappy with the life of your smartphone battery?


These images show how the surfaces of magnesia (top block) and barium titanate (bottom block) respond when they come into contact. The resulting lattice deformations in each object contributes to the driving force behind the electric charge transfer during friction.

Credit: James Chen, University at Buffalo

Thought so.

Help could be on the way from one of the most common, yet poorly understand, forms of power generation: static electricity.

"Nearly everyone has zapped their finger on a doorknob or seen child's hair stick to a balloon. To incorporate this energy into our electronics, we must better understand the driving forces behind it," says James Chen, PhD, assistant professor in the Department of Mechanical and Aerospace Engineering in the School of Engineering and Applied Sciences at the University at Buffalo.

Chen is a co-author of a study in the December issue of the Journal of Electrostatics that suggests the cause of this hair-raising phenomenon is tiny structural changes that occur at the surface of materials when they come into contact with each other.

The finding could ultimately help technology companies create more sustainable and longer-lasting power sources for small electronic devices.

Supported by a $400,000 National Science Foundation grant, Chen and Zayd Leseman, PhD, associate professor of mechanical and nuclear engineering at Kansas State University, are conducting research on the triboelectric effect, a phenomenon wherein one material becomes electrically charged after it contacts a different material through friction.

The triboelectric effect has been known since ancient times, but the tools for understanding and applying it have only become available recently due to the advent of nanotechnology.

"The idea our study presents directly answers this ancient mystery, and it has the potential to unify the existing theory. The numerical results are consistent with the published experimental observations," says Chen.

The research Chen and Leseman conduct is a mix of disciplines, including contact mechanics, solid mechanics, materials science, electrical engineering and manufacturing. With computer models and physical experiments, they are engineering triboelectric nanogenerators (TENGs), which are capable of controlling and harvesting static electricity.

"The friction between your fingers and your smartphone screen. The friction between your wrist and smartwatch. Even the friction between your shoe and the ground. These are great potential sources of energy that we can to tap into," Chen says. "Ultimately, this research can increase our economic security and help society by reducing our need for conventional sources of power."

As part of the grant, Chen has worked with UB undergraduate students, as well as high school students at the Health Sciences Charter School in Buffalo, to promote science, technology, engineering and math (STEM) education.

###

This study was made available online in September 2018 ahead of final publication in December 2018.

Funding for the award runs until 2020, and Chen says more findings will be presented at the American Physical Society's meeting in March in Boston, Massachusetts.

Media Contact

Cory Nealon
cmnealon@buffalo.edu
716-645-4614

 @UBNewsSource

http://www.buffalo.edu 

Cory Nealon | EurekAlert!
Further information:
http://www.buffalo.edu/news/releases/2019/01/024.html
http://dx.doi.org/10.1016/j.elstat.2018.09.001

More articles from Power and Electrical Engineering:

nachricht New Record: PLQE of 70.3% in lead-free halide double perovskites
22.07.2019 | Science China Press

nachricht First-ever visualizations of electrical gating effects on electronic structure
18.07.2019 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>