Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists publish theory, formula to improve 'plastic' semiconductors

24.09.2013
A better understanding of the conductive properties of flexible semiconductors will aid in the development of bendable electronics

Anyone who's stuffed a smart phone in their back pocket would appreciate the convenience of electronic devices that could bend. Flexible electronics could spawn new products: clothing wired to cool or heat, reading tablets that could fold like newspaper, and so on.

Alas, electronic components such as chips, displays and wires are generally made from metals and inorganic semiconductors -- materials with physical properties that make them fairly stiff and brittle.

In the quest for flexibility many researchers have been experimenting with semiconductors made from plastics or, more accurately polymers, which bend and stretch readily enough.

"But at the molecular level polymers look like a bowl of spaghetti," says Stanford chemical engineering professor Andrew Spakowitz, adding: "Those non-uniform structures have important implications for the conductive properties of polymeric semiconductors."

Spakowitz and two colleagues, Rodrigo Noriega, a postdoctoral researcher at UC Berkeley, and Alberto Salleo, a Stanford professor of Materials Science and Engineering, have created the first theoretical framework that includes this molecular-level structural inhomogeneity, seeking to understand, predict and improve the conductivity of semiconducting polymers.

Their theory, published today (Monday Sept 23@12 pm PST) in the Proceedings of the National Academy of Sciences, deals with the observed tendency of polymeric semiconductors to conduct electricity at differing rates in different parts of the material – a variability that, as the Stanford paper explains, turns out to depend on whether the polymer strands are coiled up like a bowl of spaghetti or run relatively true, even if curved, like lanes on a highway.

In other words, the entangled structure that allows plastics and other polymers to bend also impedes their ability to conduct electricity, whereas the regular structure that makes silicon semiconductors such great electrical switches tends to make it a bad fit for our back pockets.

The Stanford paper in PNAS gives experimental researchers a model that allows them to understand the tradeoff between the flexibility and conductivity of polymeric semiconductors.

Grasping how they created their model requires a basic understanding of polymers. The word "polymer" is derived from the Greek for "many parts" which aptly describes their simple molecular structure, which consists of identical units, called monomers, that string together, end to end, like so many sausages. Humans have long used natural polymers such as silk and wool, while newer industrial processes have adapted this same technique to turn end-to-end chains of hydrocarbon molecules, ultimately derived from petroleum byproducts, into plastics.

But it was only in the late 1970s that a trio of scientists discovered that plastics which, until then were considered non-conductive materials suitable to wrap around wires for insulation could, under certain circumstances, be induced to conduct electricity.

The three scientists, Alan Heeger, Alan MacDiarmid and Hideki Shirakawa, shared the Nobel Prize in Chemistry in 2000 for their co-discovery of polymeric semiconductors. In recent years, with increasing urgency, researchers have been trying to harness the finicky electrical properties of plastics with an eye toward fashioning electronics that will bend without breaking.

In the process of experimenting with polymeric semiconductors, however, researchers discovered that these flexible materials exhibited "anomalous transport behavior" or, simply put, variability in the speed at which electrons flowed through the system.

One of the fundamental insights of the Stanford paper is that electron flow through polymers is affected by their spaghetti-like structure – a structure that is far less uniform than that of the various forms of silicon and other inorganic semiconductors whose electrical properties are much better understood.

"Prior theories of electrical flow in polymeric semiconductors are largely extrapolated from our understanding of metals and inorganic semiconductors like silicon," Spakowitz said, adding that he and his collaborators began by taking a molecular-level view of the electron transport issue.

In essence, the variability of electron flow through polymeric semiconductors owes to the way the structure of these molecular chains creates fast paths and congestion points (refer to diagram). In a stylized sense imagine that a polymer chain runs relatively straight before coming to a hairpin turn to form a U-shape. An electric field moves electrons rapidly up to the hairpin, only to stall.

Meanwhile imagine a similar U-shape polymer separated from the first by a tiny gap. Eventually, the electrons will jump that gap to go from the first fast path to the opposing fast path. One way to think about this is a traffic analogy, in which the electrons must wait for a traffic light to cross from one street, though the gap, before proceeding down the next.

Most importantly, perhaps, in terms of putting this knowledge to use, the Stanford theory includes a simple algorithm that begins to suggest how to control the process for making polymers – and devices out of the resulting materials - with an eye toward improving their electronic properties.

"There are many, many types of monomers and many variables in the process," Spakowitz said. The model presented by the Stanford team simplifies this problem greatly by reducing it to a small number of variables describing the structural and electronic properties of semiconducting polymers. This simplicity does not preclude its predictive value; in fact, it makes it possible to evaluate the main aspects describing the physics of charge transport in these systems.

"A simple theory that works is a good start," said Spakowitz, who envisions much work ahead to bring bending smart phones and folding e-readers to reality.

Media Contact: Tom Abate, Associate Director of Communications, Stanford Engineering, 650-736-2245, tabate@stanford.edu

Tom Abate | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>