Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solutions for an Internet of Energy

26.09.2014

In the EU-funded Artemis research project, Siemens has developed solutions for a future "Internet of Energy."

This Internet of Energy is defined as the networking of relatively autonomous electricity producers and consumers, who determine and cover the energy demand among themselves. Such an infrastructure will become necessary when large numbers of electric vehicles have to be supplied with energy in the future.


The intelligent power grid of tomorrow, the so-called Smart Grid, ensures that energy from renewable energy sources is extensively integrated in private households. Electric cars can be recharged overnight with off-peak energy generated by wind power.

Siemens has, among other things, developed technologies that integrate electric vehicles into the energy management systems of large buildings. The results are being presented at the European Conference on Nanoelectronics and Embedded Systems for Electric Mobility ecoCity eMotion in Erlangen from September 22-26.

Like other energy consumers and small producers, electric cars still operate in a completely uncoordinated manner, feeding energy into the grid at random times and tapping electricity in a similarly arbitrary manner. If their numbers continue to increase, their energy demand and the energy they can supply will have to be planned in advance in order to keep the grid stable.

According to experts, the solution is to create an Internet of Energy that would largely allow consumers and producers to coordinate supply and demand autonomously among themselves. An Internet of Energy would be equipped with smart forecasting systems that would use weather forecasts, traffic expectations and other information to predict future energy demand.

Within the framework of Artemis, Siemens is developing solutions that enable large numbers of small producers to coordinate power generation more or less on their own while maintaining grid stability. The grid is connected to the Internet through secure, seamless interfaces so that the electric vehicles' energy needs can be coordinated with the supply. In the development of this system, the electric vehicles also serve as a model for other decentralized energy consumers and suppliers.

Basically, the aim is to combine the infrastructure - and therefore also the power grid - with the Internet in order to fully control the flow of energy. The necessary information is provided by a range of different systems, including power flow sensors that will be installed at a large number of points throughout the distribution network, even on its medium-voltage lines. Siemens is also developing highly efficient power electronics for charging stations and other systems. In combination with fast energy storage devices, these electronics will ensure optimum grid stability.

During the conference, Siemens is demonstrating its latest developments for the Internet of Energy at its research facility. It is showing how various smart charging stations for alternating and direct current can be integrated into the energy management system of a large functional building. The system regulates and controls the flows of energy and loads within the building. In addition, simulations show how the energy manager can incorporate the current traffic situation - in this case information about the electric vehicles - into its forecasts.

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Power and Electrical Engineering:

nachricht Gentle wall contact – the right scenario for a fusion power plant
02.07.2020 | Max-Planck-Institut für Plasmaphysik

nachricht Energy-saving servers: Data storage 2.0
01.07.2020 | Johannes Gutenberg-Universität Mainz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

A new view of microscopic interactions

02.07.2020 | Life Sciences

B-cell protectors

02.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>