Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar energy as a sustainable source of European economic growth

28.11.2008
European researchers call for paradigm shift towards clean fuel technologies

Scientists from leading European research institutions in the field of solar-to-fuel energy conversion call for unified action and substantial support for novel clean fuel technologies as well as a paradigm change in Europe’s current energy policy.

This is crucial if Europe is to maintain its environmental stability and economic development: Direct conversion of solar energy into fuel represents one of the very few major options that humankind has to provide socially, economically and environmentally robust and resilient renewable fuel with energy security that is guaranteed in a humanitarian instead of confrontational manner, according to the Science Policy Briefing “Harnessing Solar Energy for the Production of Clean Fuel” issued by European Science Foundation (ESF).

It is now becoming widely recognised that the public R&D budgets allocated to the renewable energy technologies need immediate and substantial increase. Contrary to the massive public investments to traditional energy sources and energy infrastructure, the share of clean energy in R&D budgets remains as low as at 7-8 percent.

This ESF Science Policy Briefing is the outcome of a discussion among groups of leading European scientists in the field of solar energy and proposes particular steps towards workable research programmes and implementation strategies for better understanding the challenges of clean fuel research and related socio-economic issues. Its main goal is to open a broad debate between the relevant public and private bodies at both national and European level on how to shape Europe’s leadership in this domain.

The scientists involved explain that there are no fundamental engineering concerns that would limit a full-scale commercial use of solar-to-fuel energy conversion in the future. In the paper they identify and project two of the most promising technologies where - given effective support - major scientific breakthroughs are expected:

1. Solar-to-fuel conversion in microorganisms. This technology utilizes modified photosynthetic microorganism s to produce hydrogen and carbon-based fuels from sunlight. Although there are already some research achievements in this field, the Policy Briefing emphasizes that for secure and sustainable solar-to-fuel technology a substantial improvement of efficiency needs to be realised in the next few years. The scientists also call for rapid development of prototype outdoor photobioreactors through partnerships with private sector which would promote further engineering and scientific improvements.

2. Photocatalysis - a development of chemical/physical solar-to-fuel cells (the artificial leaf), mimicks the biological processes that plants successfully use to harness solar energy. The detailed information on how green plants are able to exploit solar energy can be used to design novel technologies capable of using solar energy to produce hydrogen or secondary fuels.

Both technologies have the potential to provide CO2 neutral fuels with a higher efficiency than those based on field crops. And both are independent of the use of arable land mass. Both solutions require long term planning and development. They need additional support to blend the underlying basic science into cross-cutting technological applications. According to these experts this provides a “genuine chance for ‘emerging ideas’” and will give rise to high impact’ science and multidisciplinary cooperation.

In addition to these two fields for joint-action, the policy briefing also addresses social, economic and political factors that are closely related to a new ‘clean fuel’ energy infrastructure.

Social sciences must addressed a whole array of issues and concerns stretching from overcoming opposition to innovation from the current energy industry incumbents to the role of public understanding and engagement in shaping a future energy policy. The overall goal of the social research in this regard will be to forecast the alternative paths in a future solar energy socio-technical system. This would allow for more adaptive and interactive planning instruments.

Finally, the science policy brief addresses the implementation of the outlined research by specific science policies at the European and national levels. As the direct conversion of solar energy to fuel is not yet widely commercialised and profound scientific progress needs to be done, the R&D programmes of national governments and of the European Union has a vital role to play in leading the development of new clean fuel technologies.

The necessary increase in effort includes better research coordination at the European level. This is seen as another crucial condition for a soft transition to a new clean energy infrastructure. In that regard, ESF, with its wide portfolio of instruments, can provide a European platform leading together various national programmes to develop a synergy and to strengthen the Europe-wide collaboration.

Thomas Lau | alfa
Further information:
http://www.esf.org/

More articles from Power and Electrical Engineering:

nachricht New creepy, crawly search and rescue robot developed at Ben-Gurion U
19.07.2018 | American Associates, Ben-Gurion University of the Negev

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>