Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smoothly moving industrial robots save energy

04.06.2014

Siemens wants to further reduce the power consumption of manufacturing robots in the automotive industry.

One approach to this problems deals with movement patterns that require less acceleration energy, as was reported in the latest issue of the magazine "Pictures of the Future".

Working with Volkswagen and Fraunhofer Gesell­schaft as part of the Green Carbody Technologies (InnoCaT) innovation alliance, Siemens studied the motion sequences of manufacturing robots. The partners developed a simulation model that calculates the best trajectories for robots from the standpoint of energy efficiency.

Tests have shown that this approach can reduce energy consumption by up to half. Goal is to develop a software program that can be used to reprogram existing manufacturing robots to operate in a more energy-efficient manner, without making changes to the production process.

... more about:
»arms »conditions »electricity »mechanical »movement

Manufacturing robots make an automotive factory fast and efficient, but they also consume large quantities of electricity. Particularly in body shell production, where numerous robots are deployed, they account for more than half of the total energy consumed. One approach to saving energy involves the control system.

Today's robots are extremely jerky in their movements. They move their arms along straight lines and brake abruptly at every change of direction before turning and accelerating again. This costs a great deal of drive energy and stresses the mechanics.

In the laboratory, the engineers analyzed a robot's energy consumption in different work steps. They wanted to know the extent to which changes of direction influence power consumption, and determine the parameters that result in the best movement patterns in terms of energy consumption.

This analysis yielded new algorithms for a simulation model that calculates optimal motion trajectories. Based on the lab tests, they found a savings potential of between 10 and 50 percent when the robot's arms move evenly along curved paths. Furthermore, the mechanical parts are placed under less stress, resulting in lower maintenance costs and fewer downtimes.

In the automotive industry it is extremely important that numerous manufacturing robots, which often hand over work to one another in a matter of seconds, operate together smoothly. Long tests under realistic conditions showed that optimized movement patterns can lower energy consumption by up to 50 percent, even with the same cycle times.

A software module that automatically programs a robot's power consumption for a given work process, while also accommodating the interplay with adjacent machines, is under test. Automation is important: It is the only economically feasible way to reprogram thousands of manufacturing robots in a single factory.

Siemens plans to integrate such a module into its Tecnomatix manufacturing software. This will allow existing robots to be easily and safely reprogrammed to consume less energy without requiring new investments in hardware.

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

Further reports about: arms conditions electricity mechanical movement

More articles from Power and Electrical Engineering:

nachricht Scientists print sensors on gummi candy: creating microelectrode arrays on soft materials
21.06.2018 | Technische Universität München

nachricht Electron sandwich doubles thermoelectric performance
20.06.2018 | Hokkaido University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>