Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SMEs make Europe’s innovation clock tick

02.12.2008
SMEs can have a huge impact on the world standing of European research. Just look at the work of IMS Nanofabrication, a brilliant star in the semiconductor constellation. And Europe’s research funding programme has helped this tiny company shine all the more brightly.

The semiconductor industry is the clock that beats the rhythms of the Information Age. Its revolutions are marked in 18-month cycles and its ticks herald every greater advances in IT.

We know that it works to an 18-month cycle – thanks to Gordon Moore, co-founder of Intel and his Moore’s Law. Simply put, Moore’s Law says that the number of transistors on a microchip will double every 18 months for the same cost. As the silicon clock makes its 18-month revolutions, the technology’s power increases as its size and cost diminishes.

There are theoretical limits, like the possible size of printed circuits using various light frequencies, atomic force telescopes and electron beams. All technologies eventually reach a point where physical laws – like the speed of light or the frequency of an electromagnetic wave – stop one particular line of innovation. But within the boundary of physics, researchers always find ways to work around the problem.

And in Europe, SMEs are often in the thick of it.

European SMEs are a vital part of the innovation economy. They are smaller and far more numerous than their American counterparts, according to the Hitech Federation, an association for technology SMEs in Europe. The average staff level of a European SME is just six, against 19 in the USA. But European SMEs account for a staggering 34% of employment across the continent, while in the States the sector accounts for just 11% of total employment.

The importance of SMEs is further underlined by the dearth of large European companies. The USA has over 3176 companies with a turnover greater than €100m, for a population of 291m, while the EU has a population of 310m with just 2006 companies of the same size.

That SMEs play a huge part in European technology is well known. What is less well understood is how big an impact they can have on the technology landscape.

But one company, IMS Nanofabrication AG in Vienna, Austria, is a simple example of just how big a role SMEs can play on the world stage. The company designed a solution which could dramatically shave chip-making production time and cost, called Projection Mask-Less Lithography (PML2).

Masks in lithography are incredibly expensive, costing several hundred thousand, and one leading chip needs several of such critical masks to complete the circuit. They also take time to produce. The costs are so high that it is affecting semiconductor innovation.

Industry needs a cost effective and fast system now, according to Dr Hans Loeschner, co-founder and Chief Technical Officer at IMS Nanofabrication. A system that can produce chips for low-volume applications – for developing new devices and rapid prototyping.

Theoretical concept to practical prototype

IMS Nanofabrication’s solution does not use a single Electron Beam Direct Write device, usually used for making masks and writing on wafers with very low throughput. Instead, they split the electron beam into thousands of smaller, micrometer-sized beams via an aperture plate. Those beams then pass through a blanking plate, which deflects some of the smaller beams. The un-deflected beams imprint the desired pattern on the silicon wafer.

The idea has been around for some time. “IMS – Ion Microfabrication Systems – proposed a similar solution in the 1980s,” explains Dr Loeschner. But it was not possible to fabricate the blanking device at that time.

“There was a further problem to realise a demagnification of 200:1 to turn micrometer-sized beams into beams of less than 20nm in sharpness,” says Dr Loeschner. Now IMS Nanofabrication can provide the required degree of sharpness.

It was an exciting and promising idea, but going from a theoretical concept to a practical prototype was a big leap.

And here is another even more important lesson that IMS Nanofabrication can teach us: The importance of research support to European SMEs. The company had a great idea, but needed help turning it into a proof-of-concept system.

Enter the Europe’s IST research funding programme (FP6), which provided a grant that allowed IMS and its partners to create the RIMANA project.

IMS Nanofabrication and the RIMANA project was able to build, test and experiment on a new device for semiconductor lithography that could unlock a major bottleneck in microchip design.

Huge impact

It has had a huge impact, with RIMANA invited all over the world to talk about its work. The project immediately seized the interest of global players on the semiconductor stage, and it is in advanced negotiations with a strategic partner to commercialise its prototype PML2 device.

It has only begun to explore the potential of the new technology, which could have a long life. So much so that PML2 is now part of a larger research consortium – called MAGIC – to further refine the concept.

So how did an SME in Austria become a player in the global semiconductor stage?

The ticks on Europe’s semiconductor clock

“There were a variety of factors that played an important role,” Dr Loeschner tells ICT Results. “Excellent personnel and management were key elements. Gerhard Gross, our CEO, was SEMATECH Director of Lithography and headed a company that produces electron beam systems.

“He stimulated mask-less lithography development and that helped to get our idea PML2 known. Elmar Platzgummer, our COO, is a young, most innovative physicist. Together with him the ‘radical innovation’ [in] PML2 was developed. But you have to choose the right forum,” Dr Loeschner warns.

He says creating a good abstract was essential to get the opportunity to present the idea, and once a company does get to present their idea, it is vital to make a really compelling presentation, that spells out the benefits clearly. “Christof Klein, our PML2 Project Manager, was able to fulfil this task,” Dr Loeschner notes.

“We were very lucky as well in that we had an excellent project officer, who really understood the technology and was able to offer great feedback and a critical appraisal of the work we were doing, what was working and what was not. [Our] European Commission project officer was really an excellent resource and he helped the project immensely.”

Dr Loeschner added that it was critical to have an inventive spirit, to overcome problems that might occur during the research and development of a new idea. Good connections and contacts within the industry were important, too.

It is a tall order for an SME, but the rewards are worth the effort. IMS Nanofabrication has developed a bottleneck-breaking technology that could change the rules of the game in the semiconductor world.

All of which points to perhaps the most important lesson. In Europe, SMEs really are the ticks on the semiconductor clock.

This the second and final of a two-part special feature on the RIMANA project appearing on ICT Results.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90230

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>