Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart wireless power outlets

01.08.2012
Many homeowners dream of being able to wash a load of laundry when the photovoltaic panels on the roof are delivering a maximum of electricity, even when they are not at home. A new Internet-enabled power outlet will soon allow users to control household appliances via their smartphone, and reduce their energy costs into the bargain.

Soon there will be no need for special timers to switch lighting on and off or operate household appliances when the homeowner is absent. In future, all this can be done by means of a smartphone or PC, thanks to Internet-enabled wireless power outlets that support the new IPv6 Internet protocol.


The table lamp can be switched on and off by means of a smartphone app – thanks to the HexaBus wireless power outlet.
© Fraunhofer ESK

The smart socket was developed by researchers at the Fraunhofer Institute for Communication Systems ESK in Munich in collaboration with the Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern and the industrial partner embedded brains GmbH. “We have been able to connect the power outlets wirelessly using the IPv6 protocol,” says ESK research engineer Günter Hildebrandt. “All household appliances plugged in one of the sockets can be switched on and off remotely using an IPv6-compatible device such as a smartphone or laptop PC – from anywhere.”

The wireless power outlets are a component of the HexaBus home automation system that was developed by the ITWM as part of the mySmartGrid project (www.mysmartgrid.de). “The HexaBus components make the smart home of the future a reality. They enable household appliances to be controlled intelligently, thus optimizing or reducing electricity consumption. For example, the householder can start the washing machine during cheap-rate off-peak hours, or run the dishwasher when the photovoltaic panels on the roof are generating sufficient power,” says industrial engineer Mathias Dalheimer of the ITWM, who leads the SmartGrid project and is its chief programmer.

Intelligent control and measurement of power consumption

In addition to the wireless power outlets, the HexaBus system employs a specially designed USB stick that plugs into any compatible, off-the-shelf router. The user enters the command to switch on an appliance via a standard web browser or an Android-compatible smartphone app. The router and stick then forward the data to the power outlet. This two-way communication function also allows the wireless power outlet to send data to the smartphone, informing the user how much power various appliances are consuming at any given time. Thus, the user can optimize their power consumption. “The combination of parallel control and measurement functions is an entirely novel feature that no other wireless power outlet has offered before,” says Hildebrandt.

Because the HexaBus system is based on the IPv6 data communication protocol, a separate IP address is assigned to each power outlet, and thereby to each connected appliance, enabling them to be accessed directly. But how did the researchers go about integrating Internet functionality in the wireless power outlets and USB sticks? To do so, Hildebrandt and his team developed special protocol software and an extension to the Contiki operating system that enables it to handle the 6LoWpan (IPv6 over Low power Wireless Personal Area Network) communication protocol. Contiki is an open-source operating system for networked embedded devices such as the microcontrollers incorporated in wireless power outlets and USB sticks. A linked web browser protocol enables users to assign a separate name to each power outlet – such as “washingmachine.basement”.

Guaranteed data security

Users have no need to worry about the security of their data – all information is transmitted in encrypted form. To make this possible, the experts modified Contiki to enable it to operate with the AES-128 advanced encryption standard. Wireless control signals are transmitted in the 868-MHz frequency band. “This permits users to remotely control a widely distributed network of appliances. The distance between the power outlet and the router can be as high as 30 meters,” explains Hildebrandt.

The HexaBus power outlets are ready for commercial application. Their manufacture has been entrusted to embedded brains GmbH, the industrial partner that was also responsible for the hardware development of the power outlets and USB sticks. Meanwhile, the researchers have a new idea up their sleeves: they want to enhance their system with multihop networking capability. By linking together a series of power outlets, the router will be able to pass messages from one to another, thus extending the range of the communication system – a solution that could be of interest to businesses for their office buildings and industrial sites.

Günter Hildebrandt | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/august/smart-wireless-power-outlets.html

More articles from Power and Electrical Engineering:

nachricht Researchers measure near-perfect performance in low-cost semiconductors
18.03.2019 | Stanford University

nachricht Robot arms with the flexibility of an elephant’s trunk
18.03.2019 | Universität des Saarlandes

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>