Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the sky the limit for wind power?

17.06.2009
In the future, will wind power tapped by high-flying kites light up New York?

A new study by scientists at the Carnegie Institution and California State University identifies New York as a prime location for exploiting high-altitude winds, which globally contain enough energy to meet world demand 100 times over.

The researchers found that the regions best suited for harvesting this energy match with population centers in the eastern U.S. and East Asia, but fluctuating wind strength still presents a challenge for exploiting this energy source on a large scale.

Using 28 years of data from the National Center for Environmental Prediction and the Department of Energy, Ken Caldeira of the Carnegie Institution's Department of Global Ecology and Cristina Archer of California State University, Chico, compiled the first-ever global survey of wind energy available at high altitudes in the atmosphere. The researchers assessed potential for wind power in terms of "wind power density," which takes into account both wind speed and air density at different altitudes.

"There is a huge amount of energy available in high altitude winds," said coauthor Ken Caldeira. "These winds blow much more strongly and steadily than near-surface winds, but you need to go get up miles to get a big advantage. Ideally, you would like to be up near the jet streams, around 30,000 feet."

Jet streams are meandering belts of fast winds at altitudes between 20 and 50,000 feet that shift seasonally, but otherwise are persistent features in the atmosphere. Jet stream winds are generally steadier and 10 times faster than winds near the ground, making them a potentially vast and dependable source of energy. Several technological schemes have been proposed to harvest this energy, including tethered, kite-like wind turbines that would be lofted to the altitude of the jet streams. Up to 40 megawatts of electricity could be generated by current designs and transmitted to the ground via the tether.

"We found the highest wind power densities over Japan and eastern China, the eastern coast of the United States, southern Australia, and north-eastern Africa," said lead author Archer. "The median values in these areas are greater than 10 kilowatts per square meter. This is unthinkable near the ground, where even the best locations have usually less than one kilowatt per square meter."

Included in the analysis were assessments of high altitude wind energy for the world's five largest cities: Tokyo, New York, Sao Paulo, Seoul, and Mexico City. "For cities that are affected by polar jet streams such as Tokyo, Seoul, and New York, the high-altitude resource is phenomenal," said Archer. "New York, which has the highest average high-altitude wind power density of any U.S. city, has an average wind power density of up to 16 kilowatts per square meter."

Tokyo and Seoul also have high wind power density because they are both affected by the East Asian jet stream. Mexico City and Sao Paulo are located at tropical latitudes, so they are rarely affected by the polar jet streams and just occasionally by the weaker sub-tropical jets. As a result they have lower wind power densities than the other three cities.

"While there is enough power in these high altitude winds to power all of modern civilization, at any specific location there are still times when the winds do not blow," said Caldeira. Even over the best areas, the wind can be expected to fail about five percent of the time. "This means that you either need back-up power, massive amounts of energy storage, or a continental or even global scale electricity grid to assure power availability. So, while high-altitude wind may ultimately prove to be a major energy source, it requires substantial infrastructure."

Reference: Archer, C. L.; Caldeira, K. Global Assessment of High-Altitude Wind Power. Energies 2009, 2, 307-319.

The Carnegie Institution (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science. The Department of Global Ecology, located in Stanford, California, was established in 2002 to help build the scientific foundations for a sustainable future. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

Ken Caldeira | EurekAlert!
Further information:
http://www.ciw.edu

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>