Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon-Germanium Electronics May Cut Spacecraft Weight

30.09.2009
Space environments can deliver a beating to spacecraft electronics. For decades, satellites and other spacecraft have used bulky and expensive shielding to protect vital microelectronics – microprocessors and other integrated circuits – from space radiation.

Researchers at the Georgia Institute of Technology are developing ways to harden the microchips themselves against damage from various types of cosmic radiation. With funding from NASA and other sponsors, a Georgia Tech team is investigating the use of silicon-germanium (SiGe) to create microelectronic devices that are intrinsically resistant to space-particle bombardment.

Key to the investigation is determining exactly what happens inside a device at the instant a particle hits, says principal investigator John D. Cressler, who is a Ken Byers Professor in the Georgia Tech School of Electrical and Computer Engineering.

“Cosmic radiation can go right through the spacecraft, and right through electronics on the way, generating charge inside the device that can cause electronic systems to produce errors or even die,” Cressler said. “There's a lot of interest in improved hardening capabilities from NASA, the Department of Defense and communications companies, because anything that flies into space has to withstand the effects of this radiation.”

Silicon-germanium holds major promise for this application, he adds. SiGe alloys combine silicon, the most common microchip material, with germanium, at nanoscale dimensions. The result is a material that offers important gains in toughness, speed and flexibility.

Any space vehicle, from NASA spacecraft and military vehicles to communications and global positioning system (GPS) satellites, must contend with two principal types of cosmic radiation.

- Ionizing radiation includes ubiquitous particles such as electrons and protons that are relatively high in energy but not deeply penetrating. A moderate amount of metal shielding can reduce their destructive effect, but such protection increases a space vehicle’s launch weight.

- Galactic cosmic rays include heavy ions and other extremely high-energy particles. It is virtually impossible to protect against these dangers.

Faced with damaging radiation, engineers have for decades augmented shielding with a circuit-design technique called “triple modular redundancy.” This approach utilizes three copies of each circuit, all tied into logic circuitry at one end. If one copy of the circuit is corrupted by cosmic radiation and begins producing bad data, the logic circuit opts for the matching data produced by the other two circuits.

“The problem with this approach is that it requires three times the overhead in power, real-estate and cost,” Cressler said.

Other traditional circuit-protecting techniques have included the hardening-by-process method. In this approach, integrated circuits are produced using special processes that harden the chips against radiation damage. The problem is this processing generally increases chip costs by 10 to 50 times.

As a result, the space community is eager to find ways to produce space-hardened microelectronic devices using only everyday commercial chip-making technologies, Cressler says. The savings in cost, size and weight could be very significant.

Silicon-germanium is a top candidate for this application because it has intrinsic immunity to many types of radiation. The catch is that, like other materials, SiGe cannot stand up to the extremely destructive heavy ions present in galactic cosmic rays.

At least, not yet.

Cressler’s team is analyzing exactly what happens inside a SiGe device when it’s subjected to the type of energy found in heavy ions. Using sophisticated new equipment, including an extremely high-speed oscilloscope, researchers can capture details of particle-strike events that last only trillionths of a second (picoseconds).

Working with NASA and the U.S. Naval Research Laboratory, Cressler is using an ultrafast laser to inject current into a silicon-germanium transistor. The aim is to emulate the effect of a heavy-ion strike in space.

“When I shine a laser on the device, it generates a pulse of current that may only last for a few picoseconds,” Cressler said. “Capturing the dynamics of that process – what it looks like in time and in its magnitudes – is important and challenging.”

Cressler’s investigation also involves firing actual ions at SiGe circuits. Using a focused ion microbeam at the Sandia National Laboratories, the Georgia Tech team can aim a single heavy ion at a given point on a device and capture those results as well.

The ultimate aim is to alter silicon-germanium devices and circuits in ways that will make them highly resistant to nearly all cosmic radiation, including heavy ions, without adding overhead.

Observing actual particle impacts in real time is key, Cressler says. Detailed computer 3-D models of particle strikes on SiGe devices and circuits – created with sophisticated numerical simulation techniques – have already been developed. But until researchers can compare these models to actual observed data, they can’t be sure the models are correct.

“If we get good fidelity between the two,” he added, “then we've know we have a good understanding of the physics.”

Step two, he adds, will involve using that information to design devices and circuits that are highly immune to radiation.

“One of the holy grails in this field is getting sufficient radiation hardness without resorting to any of the high overhead schemes such as shielding, process hardening, or triple modular redundancy,” he said. “And, in fact, we are closing in on that goal, using SiGe electronics.”

Technical Contact: John Cressler (404-894-5161); E-mail: (john.cressler@ece.gatech.edu).

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Power and Electrical Engineering:

nachricht Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves
03.07.2020 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Electrons in the fast lane
03.07.2020 | Max-Planck-Institut für Polymerforschung

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>