Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon-Air Battery: Non-stop Power for Thousands of Hours

29.10.2009
Scientists at the Technion-Israel Institute of Technology have developed a new, environmentally friendly silicon-air battery capable of supplying non-stop power for thousands of hours without needing to be replaced. The findings are published in the October 2009 issue of Electrochemistry Communications.

Created from oxygen and silicon (the second most plentiful element in the earth’s crust), such batteries would be lightweight, have an unlimited shelf life, and have a high tolerance for both humid and extremely dry conditions. Potential uses include medical applications (for example, powering diabetic pumps or hearing aids), sensors and microelectronics structured from silicon.

“Silicon-air batteries will be used like the ones already in use today,” says lead researcher Prof. Yair Ein-Eli of the Department of Materials Engineering. “But by using silicon – a safe, non-toxic, stable and more common material – we can create very lightweight batteries with infinite shelf life and high energy capacity.”

Silicon-air batteries would provide significant savings in cost and weight because they lack the built-in cathode of conventional batteries. The cathode in silicon-air (and metal-air) batteries is the oxygen that comes from the atmosphere through the membrane.

Prof. Ein-Eli estimates that in three to four years, silicon-air batteries can be made more powerful, as well as rechargeable. In 10 years, he says, it may be possible to build “electric car batteries made from silicon that will turn into
sand that would be recycled into silicon and then into power again."

According to Prof. Ein-Eli, lightweight, long-lasting metal-air batteries are already used in hearing aids. There have also been attempts, he says, to upgrade such batteries for use in electric cars and portable electronic devices, and that interest in the matter was sparked recently when Toyota and Panasonic began joint efforts to adapt the zinc-air battery for future electronic cars.

The silicon-air battery research by Prof. Ein-Eli was financed by the Bi-National Research Foundation (BSF). Also involved in the research were Dr. David Starosvetsky and graduate student Gil Cohen from the Technion, Prof. Digby Macdonald from Penn State University, and Prof. Rika Hagiwara of Kyoto University.

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country's winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni. Based in New York City, the American Technion Society (ATS) is the leading American organization supporting higher education in Israel, with offices around the country.

Kevin Hattori | Newswise Science News
Further information:
http://www.ats.org

More articles from Power and Electrical Engineering:

nachricht Researchers produce synthetic Hall Effect to achieve one-way radio transmission
13.09.2019 | University of Illinois College of Engineering

nachricht Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly
13.09.2019 | University of Pennsylvania

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>