Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens sets a standard for smart metering powerline data communication

07.08.2015

In intelligent power supply networks – smart grids – the quality of data transmission from digital meters to the power supply company is playing an increasingly important role. To make sure data is smoothly transmitted via lines in the power grid, it must be ensured that this transmission is also possible with equipment and transmission systems from different manufacturers. Siemens has developed the CX1 data transport profile for this purpose, and it is well on its way to becoming the international standard for open, secure, and fault-tolerant data communication via powerline for smart metering in intelligent power supply grids.

The European Committee for Electrotechnical Standardization, CEN/CENELEC, has completed the standardization process with the publication of the CX1 standardization documents CLC/TS 50590 and CLC/TS 52056-8-7. With this step, Siemens has positioned CX1 as the universal international standard for powerline communication (PLC) that can be used independently of frequency band in medium and low-voltage networks.

"With the positioning of our CX1 standard, we are pursuing the goal of supporting the rapid introduction of smart metering technologies in smart grids based on a reliable, economical transmission technology," said Thomas Zimmermann, CEO of the Siemens Smart Grid Solutions & Services Business Unit.

Intelligent power supply grids, also referred to as smart grids, are designed to increase efficiency and to compensate for the highly fluctuating power that is fed from solar, wind, and biogas plants into the existing power supply networks. To accomplish this, a large number of sensors and actuators must be installed in the supply networks and linked using communication technology.

Along with grid sensors that are installed in the grid to record grid status data, smart meters can be used as information and communication gateways in households. In addition to recording energy consumption data, the devices also collect information about network quality and then relay the information to the utility company's energy management system.

This data can then be used to control the power supply grid. Distribution line carrier communication protocols (DLC) such as Siemens CX1 use the existing power lines to transmit information relating to consumption and the grid. For economic reasons, many utility companies choose to use DLC communication protocols to save the additional investment costs associated with providing an additional communications infrastructure.

Developed by Siemens in Austria, CX1 is a communications protocol that is based on spread spectrum modulation, in which multiple frequencies within the same frequency band are used simultaneously to transmit a single signal. This means that interference, which often occurs at certain frequencies, has only a negligible effect on signal transmission. In addition, through automatic routing of the communications links, the communications protocol can handle any change in the physical communication parameters of a low-voltage power supply grid, such as signal attenuation, noise, network disruption and signal coupling, as well as operational changes in network configuration.

No engineering of the communication network is required for CX1, and the protocol offers ample scope for the integration of additional transmission protocols as well as of future smart grid functions, such as the secure transmission of control signals. Furthermore, it can be integrated into existing IEC-protocol-based network automation and energy management infrastructures.

Siemens has implemented the CX1 standard in AMIS, a smart metering solution that is currently being rolled out nationwide by a large Austrian distribution system operator. In what is currently the largest CX1 installation worldwide, more than 150,000 end devices have already been installed in households. Thanks to the extremely high communications availability, the recorded smart metering measurement values are transferred to the control center with an extremely high degree of fulfillment. CX1 is the latest generation DLC communications protocol and is already being used in numerous projects.

For further information on Division Energy Management, please see www.siemens.com/energy-management

Further information on control center solutions is available at
http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/smart-metering/Pages/overview.aspx


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com


Reference Number: PR2015080301EMEN


Contact
Mr. Dietrich Biester
Energy Management Division
Siemens AG

Freyeslebenstr. 1

91058 Erlangen

Germany

Tel: +49 (9131) 7-33559

dietrich.biester​@siemens.com

Dietrich Biester | Siemens Energy Management

More articles from Power and Electrical Engineering:

nachricht Biologically inspired skin improves robots' sensory abilities (Video)
11.10.2019 | Technical University of Munich (TUM)

nachricht New electrolyte stops rapid performance decline of next-generation lithium battery
11.10.2019 | DOE/Argonne National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Chains of atoms move at lightning speed inside metals

17.10.2019 | Materials Sciences

Stretchable circuits: New process simplifies production of functional prototypes

17.10.2019 | Materials Sciences

Scientists discover method to create and trap trions at room temperature

17.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>