Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens helps transform the main wastewater treatment plant in Vienna into a green power plant

30.11.2015
  • Use of sewage gas for power generation
  • Siemens supplies the control, measuring, analytical and electrical energy systems
  • New procedure for energy-efficient treatment of sludge
  • Contribution toward climate and environmental protection as well as sustainable power generation

Siemens will support the city of Vienna in optimizing its main sewage plant in terms of energy. For this purpose, Siemens is supplying the control, measuring, analytical and power distribution systems, as well as the low-voltage and medium-voltage switchgear.

Furthermore, the order includes the installation and commissioning of the individual systems. The order is worth around 24 million euros and is part of "E_OS 2020" (Energy_Optimization Sludge Treatment), the largest environmental project ever undertaken by the city of Vienna.

As from 2020, the main sewage plant will use sewage gas to generate autonomously all the energy required for the wastewater treatment. For the sewage treatment itself, a particularly efficient method is used with reduced water content and double the solid content. This considerably reduces the energy consumed during anaerobic digestion and gas generation.

The main sewage plant, which currently is among the largest energy consumers in the community, should generate an output of 78 GWh of electricity and 82 GWh of thermal energy. In total this method should save about 40,000 metric tons of CO2 per year.

Christian Gantner, Director General of the ebswien main sewage plant: "Our conversion of the wastewater treatment plant into a green power plant makes a valuable contribution to both a responsible use of natural resources and to sustainable power generation. The efficient technologies of our partner Siemens play a key role in achieving our ambitious environmental and climate targets."

Wolfgang Hesoun, Chief Executive Officer of Siemens AG Austria: "An essential factor of success for achieving the environmental targets of a city are the measures that generate maximum ecological and economic benefit. On the basis of extensive analyses we have managed, together with our customer, to develop a tailor-made solution that will help the largest environmental project ever undertaken by the city of Vienna to become a success. In doing so, we are focusing as much on energy efficiency, preservation of resources and sustainability as we are on smart technologies and networked systems."

The order includes the migration and expansion of the existing Simatic PCS 7 process control system to the latest Version 8.1. The conversion work is taking place in parallel with normal operations. All functions are tested already in the engineering phase with the Simit simulation software, enabling quality to be assured and commissioning times to be shortened. In addition, Siemens is supplying Sitrans process instrumentation, devices for gas analysis (Ultramat/Oximat), as well as Scalance network components, including cabling, installation and commissioning. For a safe, high-availability power supply to about 450 motors and drives in the sewage plant, Siemens is installing a redundant 20 kV medium-voltage power distribution system of the type NXAir (28 fields), Sivacon S8 low-voltage power distribution systems (about 80 fields), a busbar trunking system, and 14 transformers. The protection devices of the existing systems and those of the new systems are equipped by Siemens with Ethernet-based communication interfaces. The redundant SICAM AK 3 station control technology processes all data points from the energy supply and delivers these to the higher-level switchgear control technology and subsequently for the overall monitoring of the new process control system.

For further information, please see www.siemens.com/water


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of gas and steam turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2015, which ended on September 30, 2015, Siemens generated revenue of €75.6 billion and net income of €7.4 billion. At the end of September 2015, the company had around 348,000 employees worldwide.  

Further information is available on the Internet at www.siemens.com


Reference Number: PR2015110045PDEN

Contact

Mr. David Petry
Process Industries and Drives Division
Siemens AG

Schuhstr. 60

91052 Erlangen

Germany

Tel: +49 (9131) 7-26616

david.petry​​@siemens.com


Mr. Heiko Jahr
Energy Management Division
Siemens AG

Freyeslebenstr. 1

91058 Erlangen

Germany

Tel: +49 (9131) 7-29575

heiko.jahr​@siemens.com

Dr. David Petry | Siemens Process Industries and Drives

More articles from Power and Electrical Engineering:

nachricht A paper battery powered by bacteria
21.08.2018 | American Chemical Society

nachricht Converting wind power for storage purposes
21.08.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>