Siemens and Statoil develop a subsea hydraulic power unit

The Subsea Hydraulic Power Unit (SHPU) supplies low pressure and high pressure control fluid to the subsea control modules. The subsea control module operates the hydraulic valves, the downhole safety valve and downhole chock/sliding sleeve.

The hydraulic power unit can be used in the event that the umbilical fails and also as an alternative to the hydraulic lines in the umbilical. The power unit has successfully completed the qualification process, in which it has passed function tests under hyperbaric pressure equal to a water depth of 500 meters.

The SHPU is an important building block in the industry-wide vision for a subsea factory, where the process plant is placed on the seabed. This unit was developed to be used as a contingency for an umbilical failure on a field in the North Sea.

In addition to a repair function, the SHPU can also be used to extend the life-time of existing (brown) fields. For new (green) field developments, especially on deep water and long step-outs, the SHPU can be a cost-efficient alternative to complex umbilical lines.

The most significant advantage will be to replace hydraulic power transmission lines with local subsea hydraulic power generation and storage.

In addition this technology removes issues with hydraulic friction losses in umbilical lines and reduces topside requirements for space and weight capacity.

The SHPU has standardized interfaces, and is conceptually designed as a subordinate to the local subsea control module; connected by means of a SIIS level 2 or SIIS Level 3 interface.

The SHPU takes auxiliary electrical power from existing infrastructure at the well site, and then supplies hydraulic power required for operation of the well valves. Operated in this way, the hydraulic system can achieve faster response and less energy consumption.

During operation, the SHPU does not require any changes in emergency shut-down strategy of the well. The unit can be adapted to all known hydraulic interfaces and is uncomplicated to install subsea, as it is designed for single lift installation with ROV assistance.

For further information on Siemens subsea, please see www.siemens.com/energy/subsea

Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com

Reference Number: PR2015040179EMEN

Contact
Mr. Heiko Jahr
Energy Management Division
Siemens AG

Freyeslebenstr. 1

91058 Erlangen

Germany

Tel: +49 (9131) 7295-75

heiko.jahr​@siemens.com

Media Contact

Heiko Jahr Siemens Energy Management

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Security vulnerability in browser interface

… allows computer access via graphics card. Researchers at Graz University of Technology were successful with three different side-channel attacks on graphics cards via the WebGPU browser interface. The attacks…

A closer look at mechanochemistry

Ferdi Schüth and his team at the Max Planck Institut für Kohlenforschung in Mülheim/Germany have been studying the phenomena of mechanochemistry for several years. But what actually happens at the…

Severe Vulnerabilities Discovered in Software to Protect Internet Routing

A research team from the National Research Center for Applied Cybersecurity ATHENE led by Prof. Dr. Haya Schulmann has uncovered 18 vulnerabilities in crucial software components of Resource Public Key…

Partners & Sponsors