Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens and Statoil develop a subsea hydraulic power unit

10.04.2015

Siemens and Statoil have jointly developed and qualified a subsea hydraulic power unit for use in offshore oil and gas fields in order to provide hydraulic power right at the well site.

The Subsea Hydraulic Power Unit (SHPU) supplies low pressure and high pressure control fluid to the subsea control modules. The subsea control module operates the hydraulic valves, the downhole safety valve and downhole chock/sliding sleeve.

The hydraulic power unit can be used in the event that the umbilical fails and also as an alternative to the hydraulic lines in the umbilical. The power unit has successfully completed the qualification process, in which it has passed function tests under hyperbaric pressure equal to a water depth of 500 meters.

The SHPU is an important building block in the industry-wide vision for a subsea factory, where the process plant is placed on the seabed. This unit was developed to be used as a contingency for an umbilical failure on a field in the North Sea.

In addition to a repair function, the SHPU can also be used to extend the life-time of existing (brown) fields. For new (green) field developments, especially on deep water and long step-outs, the SHPU can be a cost-efficient alternative to complex umbilical lines.

The most significant advantage will be to replace hydraulic power transmission lines with local subsea hydraulic power generation and storage.

In addition this technology removes issues with hydraulic friction losses in umbilical lines and reduces topside requirements for space and weight capacity.

The SHPU has standardized interfaces, and is conceptually designed as a subordinate to the local subsea control module; connected by means of a SIIS level 2 or SIIS Level 3 interface.

The SHPU takes auxiliary electrical power from existing infrastructure at the well site, and then supplies hydraulic power required for operation of the well valves. Operated in this way, the hydraulic system can achieve faster response and less energy consumption.

During operation, the SHPU does not require any changes in emergency shut-down strategy of the well. The unit can be adapted to all known hydraulic interfaces and is uncomplicated to install subsea, as it is designed for single lift installation with ROV assistance.

For further information on Siemens subsea, please see www.siemens.com/energy/subsea


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com

Reference Number: PR2015040179EMEN


Contact
Mr. Heiko Jahr
Energy Management Division
Siemens AG

Freyeslebenstr. 1

91058 Erlangen

Germany

Tel: +49 (9131) 7295-75

heiko.jahr​@siemens.com

Heiko Jahr | Siemens Energy Management

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>