Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding new light on the charging of lithium-ion batteries

01.11.2019

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion batteries for electric vehicles.


Artistic rendering of Argonne's photo-excitation technology for fast recharging of lithium-ion batteries.

Credit: Argonne National Laboratory

Simply exposing the cathode to a beam of concentrated light -- for example, the white light from a xenon lamp -- lowers the battery charging time by a remarkable factor of two or more. If commercialized, such technology could be a game changer for electric vehicles.

Owners of electric vehicles are well aware of "range anxiety" as the charge level runs low or the location of the closest charging station seems too distant. Fast charging remains a critical challenge if such vehicles are ever to capture a large segment of the transportation market. Charging for an electric car on empty typically takes about eight hours.

"We wanted to greatly shorten this charge reaction without damaging the electrodes from the resulting higher current flow." -- Christopher Johnson, Argonne Distinguished Fellow

Special supercharging stations now exist that achieve ultrafast charging of electric vehicles by delivering a much higher current to the battery. Passing too much current over too short a time, however, degrades battery performance.

Typically, lithium-ion batteries for vehicles are slowly charged to obtain a complete electrochemical reaction. This reaction involves removing lithium from the oxide cathode and inserting it into the graphite anode.

"We wanted to greatly shorten this charge reaction without damaging the electrodes from the resulting higher current flow," said Christopher Johnson, Argonne Distinguished Fellow and group leader in the Chemical Sciences and Engineering division.

Today's lithium-ion batteries work in a dark state, with the electrodes housed in a case. Argonne's photo-assisted technology would use a transparent container that allows concentrated light to illuminate the battery electrodes during charging.

To probe the charge process, the research team crafted small lithium-ion cells ("coin cells") with transparent quartz windows. They then tested these cells with and without white light shining through the window onto the cathode.

"We hypothesized that, during charging, white light would interact favorably with the typical cathode material, and that proved to be the case in our cell tests," Johnson said. That cathode material is a lithium manganese oxide, abbreviated as LiMn2O4 (LMO).

The key ingredient in this favorable reaction is the interplay of light with LMO, a semiconducting material known to interact with light. While absorbing the photons in the light during charging, the element manganese in the LMO changes its charge state from trivalent to tetravalent (Mn3+ to Mn4+). In response, lithium ions eject faster from the cathode than would occur without the photon-excitation process.

This condition drives the battery reaction faster. The team found that the faster reaction resulted in faster charging without degrading battery performance or cycle life. "Our cell tests showed a factor of two decrease in charging time with the light turned on," Johnson said.

The research team performed this work as part of the Center for Electrochemical Energy Science (CEES), a DOE Energy Frontier Research Center (EFRC) led by Argonne.

"This research is a great example of how CEES's goal of understanding the electrode processes in lithium-ion batteries is enabling pivotal advances that are influencing technology," said Paul Fenter, CEES Director and senior physicist in the Chemical Sciences and Engineering division. "This is emblematic of the transformational impacts that the EFRC program can achieve."

Johnson added that, "This finding is the first of its kind whereby light and battery technologies are merged, and this intersection bodes well for the future of innovative charging concepts for batteries."

The Vehicle Technologies Office of the DOE Office of Energy Efficiency and Renewable Energy has identified fast charge as a critical challenge in ensuring mass adoption of electric vehicles with a goal of 15-min. recharge time, and this research could be a key to making this possible.

This research appeared in Nature Communications, titled "Photo-accelerated fast charging of lithium-ion batteries." In addition to Johnson, other Argonne contributors are Anna Lee, Márton Vörös, Wesley M. Dose, Jens Niklas, Oleg Poluektov, Richard D. Schaller, Hakim Iddir, Victor A. Maroni, Eungje Lee, Brian Ingram, and Larry A. Curtiss.

###

This research was funded by the DOE Office of Basic Energy Sciences and performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility.

About Argonne's Center for Nanoscale Materials

The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit https://science.osti.gov/User-Facilities/User-Facilities-at-a-Glance.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Media Contact

Diana Anderson
ddanderson@anl.gov
630-252-4593

 @argonne

http://www.anl.gov 

Diana Anderson | EurekAlert!
Further information:
https://www.anl.gov/article/shedding-new-light-on-the-charging-of-lithiumion-batteries
http://dx.doi.org/10.1038/s41467-019-12863-6

More articles from Power and Electrical Engineering:

nachricht Mimicking body's circulatory AC could keep airplanes, cars and computers cooler
01.11.2019 | Drexel University

nachricht New technique lets researchers map strain in next-gen solar cells
01.11.2019 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

Im Focus: An amazingly simple recipe for nanometer-sized corundum

Almost everyone uses nanometer-sized alumina these days - this mineral, among others, constitutes the skeleton of modern catalytic converters in cars. Until now, the practical production of nanocorundum with a sufficiently high porosity has not been possible. The situation has changed radically with the presentation of a new method of nanocorundum production, developed as part of a German-Polish cooperation of scientists from Mülheim an der Ruhr and Cracow.

High temperatures and pressures, processes lasting for even dozens of days. Current methods of producing nanometer-sized alumina, a material of significant...

Im Focus: Structured light promises path to faster, more secure communications

Quantum mechanics is embracing patterns of light to create an alphabet that can be leveraged to build a light-based quantum network

Structured light is a fancy way to describe patterns or pictures of light, but deservedly so as it promises future communications that will be both faster and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

 
Latest News

The secret behind crystals that shrink when heated

04.11.2019 | Physics and Astronomy

Worldwide observations confirm nearby 'lensing' exoplanet

04.11.2019 | Physics and Astronomy

A new material for regenerative medicine capable to control cell immune response

04.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>