Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensitive robots are safer: Biologically-inspired artificial skin improves sensory ability of robots

10.10.2019

Sensitive synthetic skin enables robots to sense their own bodies and surroundings – a crucial capability if they are to be in close contact with people. Inspired by human skin, a team at the Technical University of Munich (TUM) has developed a system combining artificial skin with control algorithms and used it to create the first autonomous humanoid robot with full-body artificial skin.

The artificial skin developed by Prof. Gordon Cheng and his team consists of hexagonal cells about the size of a two-euro coin (i.e. about one inch in diameter). Each is equipped with a microprocessor and sensors to detect contact, acceleration, proximity and temperature.


Artificial skin enables robots to perceive their surroundings in much greater detail and with more sensitivity.

Astrid Eckert / TUM


Prof. Gordon Cheng and his team developed a system combining artificial skin with new control algorithms.

Astrid Eckert / TUM

Such artificial skin enables robots to perceive their surroundings in much greater detail and with more sensitivity. This not only helps them to move safely. It also makes them safer when operating near people and gives them the ability to anticipate and actively avoid accidents.

The skin cells themselves were developed around 10 years ago by Gordon Cheng, Professor of Cognitive Systems at TUM. But this invention only revealed its full potential when integrated into a sophisticated system as described in the latest issue of the journal “Proceedings of the IEEE”

More computing capacity through event-based approach

The biggest obstacle in developing robot skin has always been computing capacity. Human skin has around 5 million receptors. Efforts to implement continuous processing of data from sensors in artificial skin soon run up against limits. Previous systems were quickly overloaded with data from just a few hundred sensors.

To overcome this problem, using a NeuroEngineering approach, Gordon Cheng and his team do not monitor the skin cells continuously, but rather with an event-based system. This reduces the processing effort by up to 90 percent. The trick: The individual cells transmit information from their sensors only when values are changed. This is similar to the way the human nervous system works.

For example, we feel a hat when we first put it on, but we quickly get used to the sensation. There is no need to notice the hat again until the wind blows it off our head. This enables our nervous system to concentrate on new impressions that require a physical response.

Safety even in case of close bodily contact

With the event-based approach, Prof. Cheng and his team have now succeeded in applying artificial skin to a human-size autonomous robot not dependent on any external computation. The H-1 robot is equipped with 1260 cells (with more than 13000 sensors) on its upper body, arms, legs and even the soles of its feet. This gives it a new “bodily sensation”. For example, with its sensitive feet, H-1 is able to respond to uneven floor surfaces and even balance on one leg.

With its special skin, the H-1 can even give a person a hug safely. That is less trivial than it sounds: Robots can exert forces that would seriously injure a human being. During a hug, two bodies are touching in many different places. The robot must use this complex information to calculate the right movements and exert the correct contact pressures. “This might not be as important in industrial applications, but in areas such as nursing care, robots must be designed for very close contact with people,” explains Gordon Cheng.

Versatile and robust

Gordon Cheng's robot skin system is also highly robust and versatile. Because the skin consists of cells, and not a single piece of material, it remains functional even if some cells stop working. “Our system is designed to work trouble-free and quickly with all kinds of robots,” says Gordon Cheng. “Now we're working to create smaller skin cells with the potential to be produced in larger numbers.”

More information:

The H-1 robot was financed by the German Research Foundation (DFG) with funding under a large equipment grant application.

Chair of Cognitive Systems: http://www.ics.ei.tum.de
Professor Gordon Cheng: http://www.professoren.tum.de/en/cheng-gordon/

Video and high-resolution images:

https://youtu.be/M-Y2HW6JcGI
https://mediatum.ub.tum.de/1521354

Wissenschaftliche Ansprechpartner:

Prof. Dr. Gordon Cheng
Technical University of Munich (TUM)
Chair of Cognitive Systems
Tel: +49 (89) 289-25765
borngesser@tum.de

Originalpublikation:

G. Cheng, E. Dean-Leon, F. Bergner, J. Rogelio Guadarrama Olvera, Q. Leboutet and P. Mittendorfer, "A Comprehensive Realization of Robot Skin: Sensors, Sensing, Control, and Applications". Proceedings of the IEEE (2019). https://doi.org/10.1109/JPROC.2019.2933348

F. Bergner, E. Dean-Leon, J. R. Guadarrama-Olvera and G. Cheng, "Evaluation of a Large Scale Event Driven Robot Skin". IEEE Robotics and Automation Letters (2019). https://doi.org/10.1109/LRA.2019.2930493

J. R. Guadarrama-Olvera, E. Dean-Leon, F. Bergner and G. Cheng, "Pressure-Driven Body Compliance Using Robot Skin". IEEE Robotics and Automation Letters (2019). https://doi.org/10.1109/LRA.2019.2928214

Dr. Ulrich Marsch | Technische Universität München

More articles from Power and Electrical Engineering:

nachricht Hot electrons harvested without tricks
18.11.2019 | University of Groningen

nachricht New laser opens up large, underused region of the electromagnetic spectrum
15.11.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>