Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Semiconductor-free microelectronics are now possible, thanks to metamaterials

08.11.2016

Engineers at the University of California San Diego have fabricated the first semiconductor-free, optically-controlled microelectronic device. Using metamaterials, engineers were able to build a microscale device that shows a 1,000 percent increase in conductivity when activated by low voltage and a low power laser.

The discovery paves the way for microelectronic devices that are faster and capable of handling more power, and could also lead to more efficient solar panels. The work was published Nov. 4 in Nature Communications.


This is the designed semiconductor-free microelectronic device.

Credit: UC San Diego Applied Electromagnetics Group


These are scanning electron micrograph images of the semiconductor-free microelectronic device (top left) and the gold metasurface (top right, bottom).

Credit: UC San Diego Applied Electromagnetics Group

The capabilities of existing microelectronic devices, such as transistors, are ultimately limited by the properties of their constituent materials, such as their semiconductors, researchers said.

For example, semiconductors can impose limits on a device's conductivity, or electron flow. Semiconductors have what's called a band gap, meaning they require a boost of external energy to get electrons to flow through them. And electron velocity is limited, since electrons are constantly colliding with atoms as they flow through the semiconductor.

A team of researchers in the Applied Electromagnetics Group led by electrical engineering professor Dan Sievenpiper at UC San Diego sought to remove these roadblocks to conductivity by replacing semiconductors with free electrons in space. "And we wanted to do this at the microscale," said Ebrahim Forati, a former postdoctoral researcher in Sievenpiper's lab and first author of the study.

However, liberating electrons from materials is challenging. It either requires applying high voltages (at least 100 Volts), high power lasers or extremely high temperatures (more than 1,000 degrees Fahrenheit), which aren't practical in micro- and nanoscale electronic devices.

To address this challenge, Sievenpiper's team fabricated a microscale device that can release electrons from a material without such extreme requirements. The device consists of an engineered surface, called a metasurface, on top of a silicon wafer, with a layer of silicon dioxide in between. The metasurface consists of an array of gold mushroom-like nanostructures on an array of parallel gold strips.

The gold metasurface is designed such that when a low DC voltage (under 10 Volts) and a low power infrared laser are both applied, the metasurface generates "hot spots"--spots with a high intensity electric field--that provide enough energy to pull electrons out from the metal and liberate them into space.

Tests on the device showed a 1,000 percent change in conductivity. "That means more available electrons for manipulation," Ebrahim said.

"This certainly won't replace all semiconductor devices, but it may be the best approach for certain specialty applications, such as very high frequencies or high power devices," Sievenpiper said.

According to researchers, this particular metasurface was designed as a proof-of-concept. Different metasurfaces will need to be designed and optimized for different types of microelectronic devices.

"Next we need to understand how far these devices can be scaled and the limits of their performance," Sievenpiper said. The team is also exploring other applications for this technology besides electronics, such as photochemistry, photocatalysis, enabling new kinds of photovoltaic devices or environmental applications.

###

Full paper: "Photoemission-based microelectronic devices." Authors of the study are Ebrahim Forati, Tyler J. Dill, Andrea R. Tao and Dan Sievenpiper.

This work was funded by Defense Advanced Research Projects Agency (grant N00014-13-1-0618) and the Office of Naval Research Defense University Research Instrumentation Program (grant N00014-13-1-0655).

Media Contact

Liezel Labios
llabios@ucsd.edu
858-246-1124

 @UCSanDiego

http://www.ucsd.edu 

Liezel Labios | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht New discovery makes fast-charging, better performing lithium-ion batteries possible
16.04.2019 | Rensselaer Polytechnic Institute

nachricht SLAC develops novel compact antenna for communicating where radios fail
12.04.2019 | DOE/SLAC National Accelerator Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

Im Focus: Newly discovered mechanism of plant hormone auxin acts the opposite way

Auxin accumulation at the inner bend of seedling leads to growth inhibition rather than stimulation as in other plant tissues.

Increased levels of the hormone auxin usually promote cell growth in various plant tissues. Chinese scientists together with researchers from the Institute of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New study shows people used natural dyes to colour their clothing thousands of years ago

17.04.2019 | Life Sciences

Printing nanoparticle shapes for medical applications

17.04.2019 | Life Sciences

SLAC's high-speed 'electron camera' films molecular movie in HD

17.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>