Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Semiconductor devices: Under mounting stress

09.11.2012
The recently developed ability to measure physical changes in silicon when processed into microelectronic devices could improve fabrication techniques for even smaller circuits

Thinner semiconductor wafers to house electronic circuits are needed so that more computing power can be packed into ever-smaller electrical products.

Thinning, however, makes the wafers brittle and prone to warping or breaking. A technique for measuring the stress in those chips during production is now available1, thanks to developmental work led by Xiaowu Zhang at the A*STAR Institute of Microelectronics, Singapore. The resulting information could enable miniature but robust semiconductor devices.

The conversion from bare wafer to useful device can be an arduous one for a sheet of silicon, particularly when it is only a few millimeters thick. Fabrication processes can involve bombarding the wafer with a beam of ions, dipping it in corrosive acids to etch tiny structures, exposing it to plasmas for cleaning, or coating it in layers of hot metal to create electrical contacts. Then, the wafer must be fixed into a package.

Zhang and his co-workers designed and built stress sensors directly onto a silicon wafer to monitor the strain that such packaging exerts. They took advantage of the piezoresistive effect in silicon — when a force is applied to a silicon wafer, it pushes atoms closer together. In turn, the change in atom distribution alters the way an electrical current passes through the material, which can be measured as a change in resistance. Each stress sensor consisted of 16 resistors (see image). Since the piezoresistive properties of silicon are well known, Zhang and his co-workers could simply convert the changes in resistance to a corresponding change in stress.

By equally distributing 17 such sensors on the sample surface, the researchers monitored the stress in a silicon wafer during a number of common packaging processes. These included coating the wafer in a thin film and attaching a small bump of solder. They also embedded the sensors into a plastic test board, which they dropped repeatedly. Zhang and co-workers also developed a data acquisition system that could monitor the stresses during this impact test.

“Semiconductors are a multibillion-dollar industry,” explains Zhang. “This stress data should enable the design of novel packaging technologies and reduce the chance of device damage during processing and during daily use and accidents, such as dropping the device.”

Evaluating the stresses on a device wafer during other processes, including a technique known as ‘through-silicon via’, in which electrical connections are passed all the way through the wafer, will be the next step in the team’s research, says Zhang.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics.
Associated links
http://www.research.a-star.edu.sg/research/6580
Journal information
Zhang, X., Rajoo, R., Selvanayagam, C. S., Kumar, A., Rao, V. S. et al. Application of piezoresistive stress sensor in wafer bumping and drop impact test of embedded ultrathin device. IEEE Transactions on Components, Packaging and Manufacturing Technology 2, 935–943 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6580
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Agricultural insecticide contamination threatens U.S. surface water integrity at the national scale
06.12.2018 | Universität Koblenz-Landau

nachricht Improving hydropower through long-range drought forecasts
06.12.2018 | Schweizerischer Nationalfonds SNF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>