Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Semiconducting sandwich filling retains its mystery

31.05.2010
Solving part of the long-standing puzzle of the electronic properties of an enigmatic temperature phase of a titanium oxide may yield new clues

Oxides of transition metals such as titanium are of interest for applications, such as hydrogen gas sensors or as catalysts, and have intriguing fundamental physical properties. In particular, the origin of an intermediate temperature phase of the compound Ti4O7 has puzzled scientists for decades.

By studying the different electrical phases of Ti4O7, researchers from the RIKEN SPring-8 Center in Harima, along with colleagues from other institutions in Japan, have now taken important steps towards understanding the fundamental differences between the compound’s electrical conductivity at room and low temperatures, and the enigmatic phase that forms at intermediate temperatures.

At room temperature and down to temperatures of 154 K, Ti4O7 is an excellent conductor, as it allows fast transport of electrical charges. At temperatures below 142 K, the compound is an electrical insulator. Between 142 K and 154 K, however, the mysterious intermediate temperature phase sets in where the compound is semiconducting. Both, the metallic and the insulating phases are well understood by classical theories. The semiconducting phase, however, is very strange and complex; its origin is particularly interesting because it is sandwiched by two such well-known phases, explains Munetaka Taguchi from the research team.

To elucidate the origin of the semiconducting phase, the researchers studied the electronic phases at the top of the valence band and bottom of the conduction band that are responsible for the electrical conduction. They employed the techniques of electron photoemission and x-ray absorption, which combined provide a detailed picture of the electronic phases.

In the high-temperature phase, Taguchi and colleagues found that so-called ‘coherent valence electrons’ extended as far as the conduction band, making it a metallic conductor. In the insulating phase, there is a gap in the electronic band structure and no electrons are available in the conduction band. For the intermediate regime, however, a small number of coherent electronic phases remain close to the conduction band and explain the measured electrical conductivity.

While it is clear that the small number of coherent electrons is a remnant of the metallic phase, the transformation path—from the semiconducting state to both the room-temperature metal and the low-temperature insulating phase—remains unclear, notes Taguchi. With such crucial fundamental questions still unsolved, more work is needed to study the nature of the coherent electronic phases, which Taguchi hopes “will provide us [with] vital clues to a more complete understanding of phase transitions.”

The corresponding author for this highlight is based at the Excitation Order Research Team, RIKEN SPring-8 Center

Journal information

1. Taguchi, M., Chainan, A., Matsunami, M., Eguchi, R., Takata, Y., Yabashi, M., Tamasaku, K., Nihino, Y., Ishikawa, T., Tsuda, S. et al. Anomalous state sandwiched between fermi liquid and charge ordered Mott-insulating phases of Ti4O7. Physical Review Letters 104, 106401 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6298
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Energy-efficient spin current can be controlled by magnetic field and temperature
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>